2018
DOI: 10.1155/2018/5194810
|View full text |Cite
|
Sign up to set email alerts
|

Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

Abstract: Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based) model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to be addressed. In t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
16
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 20 publications
(17 citation statements)
references
References 36 publications
0
16
0
1
Order By: Relevance
“…Métodos de Inteligência Artificial como a RNA estão sendo utilizados, com mais frequência, nas previsões de demanda, pois vêm apresentando relevantes acuracidades nas análises, gerando menor erro médio absoluto ( ) e erro percentual médio absoluto ( ) em comparação com modelos tradicionais [20]. Técnicas de Inteligência Artificial foram e estão sendo implementadas com sucesso em áreas como biomedicina, aplicações aeroespaciais, indústria automotiva, eletrônica, indústria financeira, entre outras [21].…”
Section: Inteligência Artificialunclassified
“…Métodos de Inteligência Artificial como a RNA estão sendo utilizados, com mais frequência, nas previsões de demanda, pois vêm apresentando relevantes acuracidades nas análises, gerando menor erro médio absoluto ( ) e erro percentual médio absoluto ( ) em comparação com modelos tradicionais [20]. Técnicas de Inteligência Artificial foram e estão sendo implementadas com sucesso em áreas como biomedicina, aplicações aeroespaciais, indústria automotiva, eletrônica, indústria financeira, entre outras [21].…”
Section: Inteligência Artificialunclassified
“…which attain competitive advantages for nonlinear load mapping and generalisation, although offering hinderances to criteria making and parameter setting. With the advancements in technology and computer aided predictions, the process of power load forecasting has seen improvements via ANN, wavelet transforms, fuzzy algorithms, SVM etc [8][9][10][11].…”
Section: Literature Reviewmentioning
confidence: 99%
“…Previous studies show that ARIMA and NARNN approaches have better prediction performance in time series prediction [16][17][18][19][20][21][22][23][24]. For example, Cheng C and Qin P [16] used the ARIMA model to predict the time series data of settlement of seawalls and got higher accuracy than the gray prediction.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Also, Bonetto R and Rossi M [24] used the NARNN model to predict the power demand and get a good predictive effect. In time series prediction of ECS, currently, most scholars [16][17][18][19][20][21][22][23][24][25][25][26][27][28][29][30][31] However, in the e-commerce industry, the types of products are very numerous; that is to say, there are more than one time series to be predicted. Moreover, the sales volume of e-commerce products fluctuates greatly and is easy to be affected by many factors such as price, promotion, ranking, etc.…”
Section: Literature Reviewmentioning
confidence: 99%