Heterogeneous networks constitute a promising solution to the emerging challenges of 5G networks. According to the specific network architecture, a macro-cell base station (MBS) shares the same spectral resources with a number of small cell base stations (SBSs), resulting in increased co-channel interference (CCI). The efficient management of CCI has been studied extensively in the literature and various dynamic channel assignment (DCA) schemes have been proposed. However, the majority of these schemes consider a uniform approach for the users without taking into account the different quality requirements of each application. In this work, we propose an algorithm for enabling dynamic channel assignment in the 5G era that receives information about the interference and QoS levels and dynamically assigns the best channel. This algorithm is compared to state-of-the-art channel assignment algorithm. Results show an increase of performance, e.g., in terms of throughput and air interface latency. Finally, potential challenges and way forward are also discussed.