Ransomware is a special malware designed to extort money in return for unlocking the device and personal data files. Smartphone users store their personal as well as official data on these devices. Ransomware attackers found it bewitching for their financial benefits. The financial losses due to ransomware attacks are increasing rapidly. Recent studies witness that out of 87% reported cyber-attacks, 41% are due to ransomware attacks. The inability of application-signature-based solutions to detect unknown malware has inspired many researchers to build automated classification models using machine learning algorithms. Advanced malware is capable of delaying malicious actions on sensing the emulated environment and hence posing a challenge to dynamic monitoring of applications also. Existing hybrid approaches utilize a variety of features combination for detection and analysis. The rapidly changing nature and distribution strategies are possible reasons behind the deteriorated performance of primitive ransomware detection techniques. The limitations of existing studies include ambiguity in selecting the features set. Increasing the feature set may lead to freedom of adept attackers against learning algorithms. In this work, we intend to propose a hybrid approach to identify and mitigate Android ransomware. This study employs a novel dominant feature selection algorithm to extract the dominant feature set. The experimental results show that our proposed model can differentiate between clean and ransomware with improved precision. Our proposed hybrid solution confirms an accuracy of 99.85% with zero false positives while considering 60 prominent features. Further, it also justifies the feature selection algorithm used. The comparison of the proposed method with the existing frameworks indicates its better performance.
Healthcare sector is one of the prominent sectors in which a lot of data can be collected not only in terms of health but also in terms of finances. Major frauds happen in the healthcare sector due to the utilization of credit cards as the continuous enhancement of electronic payments, and credit card fraud monitoring has been a challenge in terms of financial condition to the different service providers. Hence, continuous enhancement is necessary for the system for detecting frauds. Various fraud scenarios happen continuously, which has a massive impact on financial losses. Many technologies such as phishing or virus-like Trojans are mostly used to collect sensitive information about credit cards and their owner details. Therefore, efficient technology should be there for identifying the different types of fraudulent conduct in credit cards. In this paper, various machine learning and deep learning approaches are used for detecting frauds in credit cards and different algorithms such as Naive Bayes, Logistic Regression, K-Nearest Neighbor (KNN), Random Forest, and the Sequential Convolutional Neural Network are skewed for training the other standard and abnormal features of transactions for detecting the frauds in credit cards. For evaluating the accuracy of the model, publicly available data are used. The different algorithm results visualized the accuracy as 96.1%, 94.8%, 95.89%, 97.58%, and 92.3%, corresponding to various methodologies such as Naive Bayes, Logistic Regression, K-Nearest Neighbor (KNN), Random Forest, and the Sequential Convolutional Neural Network, respectively. The comparative analysis visualized that the KNN algorithm generates better results than other approaches.
The co-existence of small cell base stations (SBSs) with conventional macrocell base station is a promising approach to boost the capacity and coverage of cellular networks. However, densifying the network with a viral deployment of SBSs can significantly increase energy consumption. To reduce the reliance on unsustainable energy sources, one can adopt self-powered SBSs that rely solely on energy harvesting. Due to the uncertainty of energy arrival and the finite capacity of energy storage systems, self-powered SBSs must smartly optimize their ON and OFF schedule. In this paper, the problem of ON/OFF scheduling of self-powered SBSs is studied, in the presence of energy harvesting uncertainty with the goal of minimizing the operational costs consisted of energy consumption and transmission delay of a network. For the original problem, we show an algorithm can solve the problem in the illustrative case. Then, to reduce the complexity of the original problem, an approximation is proposed. To solve the approximated problem, a novel approach based on the ski rental framework, a powerful online optimization tool, is proposed. Using this approach, each SBS can effectively decide on its ON/OFF schedule autonomously, without any prior information on future energy arrivals. By using competitive analysis, a deterministic online algorithm (DOA) and a randomized online algorithm (ROA) are developed. The ROA is then shown to achieve the optimal competitive ratio in the approximation problem. Simulation results show that, compared to a baseline approach, the ROA can yield performance gains reaching up to 15.6% in terms of reduced total energy consumption of SBSs and up to 20.6% in terms of per-SBS network delay reduction. The results also shed light on the fundamental aspects that impact the ON time of SBSs while demonstrating that the proposed ROA can reduce up to 69.9% the total cost compared to a baseline approach.
Deep Learning (DL) is a subfield of machine learning that significantly impacts extracting new knowledge. By using DL, the extraction of advanced data representations and knowledge can be made possible. Highly effective DL techniques help to find more hidden knowledge. Deep learning has a promising future due to its great performance and accuracy. We need to understand the fundamentals and the state‐of‐the‐art of DL to leverage it effectively. A survey on DL ways, advantages, drawbacks, architectures, and methods to have a straightforward and clear understanding of it from different views is explained in the paper. Moreover, the existing related methods are compared with each other, and the application of DL is described in some applications, such as medical image analysis, handwriting recognition, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.