The energy-energy correlation (EEC) measures the angular distribution of the energy that flows through two calorimeters separated by some relative angle in the final state created by a source. We study this observable in the limit of small and large angles when it describes the correlation between particles belonging, respectively, to the same jet and to two almost back-to-back jets. We present a new approach to resumming large logarithmically enhanced corrections in both limits that exploits the relation between the energy correlations and four-point correlation functions of conserved currents. At large angle, we derive the EEC from the behaviour of the correlation function in the limit when four operators are light-like separated in a sequential manner. At small angle, in a conformal theory, we obtain the EEC from resummation of the conformal partial wave expansion of the correlation function at shortdistance separation between the calorimeters. In both cases, we obtain a concise representation of the EEC in terms of the conformal data of twist-two operators and verify it by comparing with the results of explicit calculation at next-to-next-to-leading order in maximally supersymmetric Yang-Mills theory. As a byproduct of our analysis, we predict the maximal weight part of the analogous QCD expression in the back-to-back limit.2 In general, the Lorentz indices of the currents in (1.2) should be contracted with the polarization vector of the incoming virtual photon. After averaging over the angular correlations between the final state and the incoming beams in (1.1), the sum over the polarizations gives g µν .3In what follows we refer to J µ and T µν as source and calorimeter operators, respectively.