This paper investigates the performance of a fully passive flapping foil device for energy harvesting in a free surface flow. The study uses numerical simulations to examine the effects of varying submergence depths and the impact of monochromatic waves on the foil’s performance. For the numerical simulations, a in-house artificial compressibility two-phase solver is employed and coupled with a rigid body dynamic solver. The results show that the fully passive flapping foil device can achieve high efficiency for submergence depths between 4 and 9 chords, with an “optimum” submergence depth where the flapping foil performance is maximised. The effects of regular waves on the foil’s performance were also investigated, showing that waves with a frequency close to that of the natural frequency of the flapping foil-aided energy harvesting. Overall, this study provides insights that could be useful for future design improvements for fully passive flapping foil devices for energy harvesting operating near the free surface.