We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike's Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance). Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.Keywords: connectivity, conservation, landscape ecology, rivers, road ecology.Habitat ou matriz: qual Ă© mais relevante para prever atropelamentos de vertebrados?
ResumoNĂłs acreditamos que nos trĂłpicos, precisamos de uma abordagem de comunidade para avaliar os impactos das estradas sobre a vida silvestre, e entĂŁo, sugerir medidas de mitigação para grupos de espĂ©cies ao invĂ©s da abordagem de espĂ©cie-foco. Compreender quais caracterĂsticas da paisagem indicam eventos de atropelamento podem tambĂ©m fornecer modelos que podem ser aplicados em outras regiĂ”es. NĂłs pretendemos avaliar se habitat ou matriz Ă© mais relevante para prever eventos de atropelamento para grupos de espĂ©cies. Nossa hipĂłtese Ă©: matriz mais permeĂĄvel Ă© o fator mais relevante para explicar os eventos de atropelamentos. Para testar essa hipĂłtese, escolhemos vertebrados como a assemblĂ©ia estudada e uma rodovia cruzando uma regiĂŁo de Mata AtlĂąntica no sudeste do Brasil como ĂĄrea de estudo. Modelos de regressĂŁo logĂstica foram criados usando presença/ausĂȘncia de eventos de atropelamentos como variĂĄveis dependentes e caracterĂsticas da paisagem como variĂĄveis independentes, os quais foram selecionados pelo CritĂ©rio de Informação de Akaike. NĂłs consideramos um conjunto de modelos candidatos contendo quatro tipos de modelos de regressĂŁo simples: modelo de efeito de habitat; modelos de efeito de tipos de matriz; modelo de efeito da rodovia; e, mode...