A determination of the eigenvalues for a three-dimensional system is made by expanding the potential function T %c +c 5(~2c bc q ' 3~2 % 2 n + 2 n 5 2 n b % e n + e n 5 e n 2q % 2 + 2 n % 2 5 2 n + 2 5 2 , around its minimum. In this paper the results of extensive numerical calculations using this expansion and the Hill-determinant approach are reported for a large class of potential functions and for various values of the perturbation parameters~2, b, and q.Résumé : Nous calculons les valeurs propres d'un systéme 3-D régi par un potentiel T %c +c 5(~2c bc q '3~2 % 2 n + 2 n 5 2 n b % e n + e n 5 e n 2q % 2 + 2 n % 2 5 2 n + 2 5 2