Context. The possibility of observationally discriminating between various types of neutron stars, described by different equations of state of the nuclear matter, as well as differentiating neutron stars from other types of exotic objects, for example, quark stars, is one of the fundamental problems in contemporary astrophysics. Aims. We consider and investigate carefully the possibility that different types of rapidly rotating neutron stars, as well as other type of compact general-relativistic objects, can be identified reliably by the study of the emission properties of the accretion discs around them. Methods. We obtain the energy flux, temperature distribution, and emission spectrum from the accretion discs around several classes of rapidly rotating neutron stars, described by different equations of state for neutron matter, and for quark stars, described by the MIT bag model equation of state, and in the CFL (Color-Flavor-Locked) phase, respectively. Results. Particular signatures appear in the electromagnetic spectrum, implying that the equation of state of the dense matter can be tested directly by using astrophysical observations of the emission spectra from accretion discs.