Wi-Fi technology has always been an attractive solution for catering the increasing data demand in mobile networks because of the availability of WiFi networks, the high bit rates they provide, and the lower cost of ownership. However, the legacy WiFi technology lacks of seamless interworking between Wi-Fi and mobile cellular networks on the one hand, and between Wi-Fi hotspots on the other hand. Nowadays, the recently released Wi-Fi Certified Passpoint Program provides the necessary control-plane for these operations. Service providers can henceforth look to such Wi-Fi systems as a viable way to seamlessly offload mobile traffic and deliver added-value services, so that subscribers no longer face the frustration and aggravation of connecting to Wi-Fi hotspots. However, the technology being rather recent, we are not aware of public studies at the state of the art documenting the achievable gain in real mobile networks. In this paper, we evaluate the capacity and energy saving gain that one can get by offloading cellular data traffic over Passpoint hotspots as a function of different hotspot placement schemes and of access point selection policies (two enabled by the Passpoint control-plane and one independent of it). We compare the policies using real mobile data from the Orange network in Paris. We show that offloading using Passpoint control-plane information can grant up to 15% capacity gain and 13% energy saving gain with respect to Passpoint-agnostic ones based on signal quality information. As of placement strategy, installing Passpoint hotspots in the outer annulus of the macrocell coverage grants the maximum capacity gain.