Semiconductor quantum dots are promising sources for polarization-entangled photons. As an alternative to the usual cascaded biexciton-exciton emission, direct two-photon emission from the biexciton can be used. With a high-quality optical resonator tuned to half the biexciton energy, a large proportion of the photons can be steered into the two-photon emission channel. In this case the degree of polarization entanglement is inherently insensitive to the exciton fine-structure splitting.In the present work we analyze the biexciton emission with particular emphasis on the influence of coupling of the quantum-dot cavity system to its environment. Especially for a high-quality cavity, the coupling to the surrounding semiconductor material can open up additional phonon-assisted decay channels. Our analysis demonstrates that with the cavity tuned to half the biexciton energy, the potentially detrimental influence of the phonons on the polarization entanglement is strongly suppressed-high degrees of entanglement can still be achieved. We further discuss spectral properties and statistics of the emitted twin photons.