ConspectusNucleic
acids are a distinct form of sequence-defined biopolymer.
What sets them apart from other biopolymers such as polypeptides or
polysaccharides is their unique capacity to encode, store, and propagate
genetic information (molecular heredity). In nature, just two closely
related nucleic acids, DNA and RNA, function as repositories and carriers
of genetic information. They therefore are the molecular embodiment
of biological information. This naturally leads to questions regarding
the degree of variation from this seemingly ideal “Goldilocks”
chemistry that would still be compatible with the fundamental property
of molecular heredity.To address this question, chemists have
created a panoply of synthetic
nucleic acids comprising unnatural sugar ring congeners, backbone
linkages, and nucleobases in order to establish the molecular parameters
for encoding genetic information and its emergence at the origin of
life. A deeper analysis of the potential of these synthetic genetic
polymers for molecular heredity requires a means of replication and
a determination of the fidelity of information transfer. While non-enzymatic
synthesis is an increasingly powerful method, it currently remains
restricted to short polymers. Here we discuss efforts toward establishing
enzymatic synthesis, replication, and evolution of synthetic genetic
polymers through the engineering of polymerase enzymes found in nature.To endow natural polymerases with the ability to efficiently utilize
non-cognate nucleotide substrates, novel strategies for the screening
and directed evolution of polymerase function have been realized.
High throughput plate-based screens, phage display, and water-in-oil
emulsion technology based methods have yielded a number of engineered
polymerases, some of which can synthesize and reverse transcribe synthetic
genetic polymers with good efficiency and fidelity.The inception
of such polymerases demonstrates that, at a basic
level at least, molecular heredity is not restricted to the natural
nucleic acids DNA and RNA, but may be found in a large (if finite)
number of synthetic genetic polymers. And it has opened up these novel
sequence spaces for investigation. Although largely unexplored, first
tentative forays have yielded ligands (aptamers) against a range of
targets and several catalysts elaborated in a range of different chemistries.
Finally, taking the lead from established DNA designs, simple polyhedron
nanostructures have been described.We anticipate that further
progress in this area will expand the
range of synthetic genetic polymers that can be synthesized, replicated,
and evolved providing access to a rich sequence, structure, and phenotypic
space. “Synthetic genetics”, that is, the exploration
of these spaces, will illuminate the chemical parameter range for
en- and decoding information, 3D folding, and catalysis and yield
novel ligands, catalysts, and nanostructures and devices for applications
in biotechnology and medicine.