Using an expanded genetic code, antibodies with site-specifically incorporated nonnative amino acids were produced in stable cell lines derived from a CHO cell line with titers over 1 g/L. Using anti-5T4 and anti-Her2 antibodies as model systems, site-specific antibody drug conjugates (NDCs) were produced, via oxime bond formation between ketones on the side chain of the incorporated nonnative amino acid and hydroxylamine functionalized monomethyl auristatin D with either protease-cleavable or noncleavable linkers. When noncleavable linkers were used, these conjugates were highly stable and displayed improved in vitro efficacy as well as in vivo efficacy and pharmacokinetic stability in rodent models relative to conventional antibody drug conjugates conjugated through either engineered surface-exposed or reduced interchain disulfide bond cysteine residues. The advantages of the oximebonded, site-specific NDCs were even more apparent when lowantigen-expressing (2+) target cell lines were used in the comparative studies. NDCs generated with protease-cleavable linkers demonstrated that the site of conjugation had a significant impact on the stability of these rationally designed prodrug linkers. In a single-dose rat toxicology study, a site-specific anti-Her2 NDC was well tolerated at dose levels up to 90 mg/kg. These experiments support the notion that chemically defined antibody conjugates can be synthesized in commercially relevant yields and can lead to antibody drug conjugates with improved properties relative to the heterogeneous conjugates formed by nonspecific chemical modification.A ntibody drug conjugates (ADCs) are emerging as a new class of anticancer therapeutics that combine the efficacy of small-molecule therapeutics with the targeting ability of an antibody (Ab) (1, 2). By combining these two components into a single molecular entity, highly cytotoxic small-molecule drugs (SMDs) can be delivered to cancerous target tissues, thereby enhancing efficacy while reducing the potential systemic toxic side effects of the SMD. Conventional ADCs are typically produced by conjugating the SMD to the Ab through the side chains of either surface-exposed lysines or free cysteines generated through reduction of interchain disulfide bonds (3, 4). Because antibodies contain many lysine and cysteine residues, conventional conjugation typically produces heterogeneous mixtures that present challenges with respect to analytical characterization and manufacturing. Furthermore, the individual constituents of these mixtures exhibit different pharmacology with respect to their pharmacokinetic, efficacy, and safety profiles, hindering a rational approach to optimizing this modality (5).Recently, it was reported that the pharmacological profile of ADCs may be improved by applying site-specific conjugation technologies that make use of surface-exposed cysteine residues engineered into antibodies (THIOMABS) that are then conjugated to the SMD, resulting in site-specifically conjugated ADCs (TDCs) with defined Ab-drug ratios. Rel...