Antibody-drug conjugates enhance the antitumor effects of antibodies and reduce adverse systemic effects of potent cytotoxic drugs. However, conventional drug conjugation strategies yield heterogenous conjugates with relatively narrow therapeutic index (maximum tolerated dose/curative dose). Using leads from our previously described phage display-based method to predict suitable conjugation sites, we engineered cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not perturb immunoglobulin folding and assembly, or alter antigen binding. When conjugated to monomethyl auristatin E, an antibody against the ovarian cancer antigen MUC16 is as efficacious as a conventional conjugate in mouse xenograft models. Moreover, it is tolerated at higher doses in rats and cynomolgus monkeys than the same conjugate prepared by conventional approaches. The favorable in vivo properties of the near-homogenous composition of this conjugate suggest that our strategy offers a general approach to retaining the antitumor efficacy of antibody-drug conjugates, while minimizing their systemic toxicity.
The reactive thiol in cysteine is used for coupling maleimide linkers in the generation of antibody conjugates. To assess the impact of the conjugation site, we engineered cysteines into a therapeutic HER2/neu antibody at three sites differing in solvent accessibility and local charge. The highly solvent-accessible site rapidly lost conjugated thiol-reactive linkers in plasma owing to maleimide exchange with reactive thiols in albumin, free cysteine or glutathione. In contrast, a partially accessible site with a positively charged environment promoted hydrolysis of the succinimide ring in the linker, thereby preventing this exchange reaction. The site with partial solvent-accessibility and neutral charge displayed both properties. In a mouse mammary tumor model, the stability and therapeutic activity of the antibody conjugate were affected positively by succinimide ring hydrolysis and negatively by maleimide exchange with thiol-reactive constituents in plasma. Thus, the chemical and structural dynamics of the conjugation site can influence antibody conjugate performance by modulating the stability of the antibody-linker interface.
Antibody therapeutics have revolutionized the treatment of cancer over the past two decades. Antibodies that specifically bind tumor surface antigens can be effective therapeutics; however, many unmodified antibodies lack therapeutic activity. These antibodies can instead be applied successfully as guided missiles to deliver potent cytotoxic drugs in the form of antibody drug conjugates (ADCs). The success of ADCs is dependent on four factors—target antigen, antibody, linker, and payload. The field has made great progress in these areas, marked by the recent approval by the US Food and Drug Administration of two ADCs, brentuximab vedotin (Adcetris®) and ado-trastuzumab emtansine (Kadcyla®). However, the therapeutic window for many ADCs that are currently in pre-clinical or clinical development remains narrow and further improvements may be required to enhance the therapeutic potential of these ADCs. Production of ADCs is an area where improvement is needed because current methods yield heterogeneous mixtures that may include 0–8 drug species per antibody molecule. Site-specific conjugation has been recently shown to eliminate heterogeneity, improve conjugate stability, and increase the therapeutic window. Here, we review and describe various site-specific conjugation strategies that are currently used for the production of ADCs, including use of engineered cysteine residues, unnatural amino acids, and enzymatic conjugation through glycotransferases and transglutaminases. In addition, we also summarize differences among these methods and highlight critical considerations when building next-generation ADC therapeutics.
Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulinregulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.Glucose transport into mammalian muscle and fat cells is an important step in insulin action and is critical for the maintenance of glucose homeostasis within the body (1). In mammalian muscle and fat cells, insulin stimulation activates a phosphorylation cascade, which in turn causes intracellular vesicles that contain the glucose transporter GLUT4, 4 to translocate to the plasma membrane (PM) and fuse (2, 3). In the basal state GLUT4 is distributed between the endosomal system, the trans-Golgi network (TGN), and a GLUT4 storage vesicle (GSV) compartment that is highly insulin-responsive (4 -6).The protein kinase Akt is activated in response to insulin and plays a critical role in GLUT4 translocation (1, 7). However, the link between the insulin signaling pathway and GLUT4 translocation is not fully understood. The insulin-dependent movement of GLUT4 vesicles to the PM is an Akt-independent process, and this is followed by an Aktdependent step likely involving the docking and fusion of vesicles with the PM (7-9). The mechanism by which Akt controls the docking and fusion of GLUT4 vesicles with the PM is not known. However, it was previously shown that a Rab GTPase-activating protein (RabGAP) known as AS160 is phosphorylated by Akt in response to insulin (10). How AS160 functions in GLUT4 trafficking and its cognate Rab proteins are not known. The role of a variety of Rab proteins in GLUT4 trafficking including Rab3d, Rab4, Rab5, and Rab11 has been examined (11-16). However, although these Rab proteins may participate in some aspects of GLUT4 trafficking, no compelling evidence for specific involvement in the insulin-regulated trafficking of GLUT4 has been found.In this study we describe four key findings that add to our understanding of GLUT4 traffic...
Purpose: Antibody drug conjugates (ADCs) combine the ideal properties of both antibodies and cytotoxic drugs by targeting potent drugs to the antigen-expressing tumor cells, thereby enhancing their antitumor activity. Successful ADC development for a given target antigen depends on optimization of antibody selection, linker stability, cytotoxic drug potency, and mode of linker-drug conjugation to the antibody. Here, we systematically examined the in vitro potency as well as in vivo preclinical efficacy and safety profiles of a heterogeneous preparation of conventional trastuzumab-mcc-DM1 (TMAb-mcc-DM1) ADC with that of a homogeneous engineered thio-trastuzumab-mpeo-DM1 (thioTMAb-mpeo-DM1) conjugate.Experimental Design and Results: To generate thioTMAb-mpeo-DM1, one drug maytansinoid 1 (DM1) molecule was conjugated to an engineered cysteine residue at Ala114 (Kabat numbering) on each trastuzumab-heavy chain, resulting in two DM1 molecules per antibody. ThioTMAb-mpeo-DM1 retained similar in vitro anti-cell proliferation activity and human epidermal growth factor receptor 2 (HER2) binding properties to that of the conventional ADC. Furthermore, it showed improved efficacy over the conventional ADC at DM1-equivalent doses (μg/m 2 ) and retained efficacy at equivalent antibody doses (mg/kg). An improved safety profile of >2-fold was observed in a short-term target-independent rat safety study. In cynomolgus monkey safety studies, thioTMAb-mpeo-DM1 was tolerated at higher antibody doses (up to 48 mg/kg or 6,000 μg DM1/m 2 ) compared with the conventional ADC that had dose-limiting toxicity at 30 mg/kg (6,000 μg DM1/m 2 ). Conclusions:The engineered thioTMAb-mpeo-DM1 with broadened therapeutic index represents a promising antibody drug conjugate for future clinical development of HER2-positive targeted breast cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.