Cryptococcus neoformans causes meningoencephalitis in immunocompromised individuals, which is treated with fluconazole (FLC) monotherapy when resources are limited. This can lead to azole resistance, which can be mediated by overexpression of ABC transporters, a class of efflux pumps. ABC pump-mediated efflux of FLC is also augmented in 10-generation old C. neoformans cells. Here, we describe a new ABC transporter Afr3 (CNAG_06909), which is overexpressed in C. neoformans cells of advanced generational age that accumulate during chronic infection. The Δafr3 mutant strain showed higher FLC susceptibility by FLC E-Test strip testing and also by a killing test that measured survival after 3 h FLC exposure. Furthermore, Δafr3 cells exhibited lower Rhodamine 6G efflux compared to the H99 wild-type cells. Afr3 was expressed in the Saccharomyces cerevisiae ADΔ strain, which lacks several drug transporters, thus reducing background transport. The ADΔ + Afr3 strain demonstrated a higher efflux with both Rhodamine 6G and Nile red, and a higher FLC resistance. Afr3-GFP localized in the plasma membrane of the ADΔ + Afr3 strain, further highlighting its importance as an efflux pump. Characterization of the Δafr3 mutant revealed unattenuated growth but a prolongation (29%) of the replicative life span. In addition, Δafr3 exhibited decreased resistance to macrophage killing and attenuated virulence in the Galleria mellonella infection model. In summary, our data indicate that a novel ABC pump Afr3, which is upregulated in C. neoformans cells of advanced age, may contribute to their enhanced FLC tolerance, by promoting drug efflux. Lastly, its role in macrophage resistance may also contribute to the selection of older C. neoformans cells during chronic infection.