This paper deals with the development of novel nanocarriers using layer by layer carbohydrate coating of caffeic acid loaded solid lipid nanoparticles (SLNs) to improve stability and colon delivery of the poorly water-soluble caffeic acid. Three biopolymers (chitosan, alginate, and pectin) in different concentrations (0.1, 0.25, and 0.5%) were electrostatically coated over the SLN surface. The size and zeta potential of produced nanocarriers were measured using photon correlation spectroscopy. Mathematical models (i.e., zero-order, first-order, Higuchi, Ritger-Peppas, reciprocal powered time, Weibull, and quadratic models) were used to describe the release and kinetic modeling in gastrointestinal solution (GIS). Also, antioxidant activity of caffeic acid during the release in GIS was investigated using DPPH and reducing activity methods. The prepared treatments coated by alginate-chitosan as well as pectin-chitosan coated SLN at the concentration of 0.1% showed nanosized bead; the latter efficiently retarded the release of caffeic acid in gastric media up to 2.5 times higher than that of SLN. Zeta potential values of coated samples were found to significantly increase in comparison to SLN indicating the higher stability of produced nanocarriers. Antioxidant activity of caffeic acid after gastric release did not result in the same trend as observed for caffeic acid release from different treatments; however, in line with less caffeic acid release in the intestine solution by the effect of coating, lower antioxidant activity was determined at the end stage of the experiment.
Potato plants with symptoms suggestive of potato purple top disease (PPTD) occurred in the central, western and north-western regions of Iran. Polymerase chain reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1 ⁄ P7 followed by primer pairs R16F2n ⁄ R16R2 and fU5 ⁄ rU3 for phytoplasma detection. Using primer pairs R16F2n ⁄ R16R2 and fU5 ⁄ rU3 in nested PCR, the expected fragments were amplified from 53% of symptomatic potatoes. Restriction fragment length polymorphism (RFLP) analysis using AluI, CfoI, EcoRI, KpnI, HindIII, MseI, RsaI and TaqI restriction enzymes confirmed that different phytoplasma isolates caused PPTD in several Iranian potato-growing areas. Sequences analysis of partial 16S rRNA gene amplified by nested PCR indicated that ÔCandidatus Phytoplasma solaniÕ, ÔCa. Phytoplasma astrisÕ and ÔCa. Phytoplasma trifoliiÕ are prevalent in potato plants showing PPTD symptoms in the production areas of central, western and north-western regions of Iran, although ÔCa. Phytoplasma solaniÕ is more prevalent than other phytoplasmas. This is the first report of phytoplasmas related to ÔCa. Phytoplasma astrisÕ, ÔCa. Phytoplasma solaniÕ and ÔCa. Phytoplasma trifoliiÕ causing PPTD in Iran.
Background:Breast milk is known as the most crucial postpartum issue in metabolic and immunologic programming of neonatal health. Human milk microbial changes over Lactation. The factors influencing the milk microbiome as well as potential impact of microbes on infant health have not yet been discovered. The objective was to identify pre- and post-natal factors that can potentially influence the bacterial communities inhabiting human milk.Materials and Methods:Breast milk samples (n = 40) with all full-term breastfed infants were collected from lactating randomized. Information on personal characteristics, dietary habits, information about infants were collected after birth. The samples were plated with serial dilutions on three selective culture media man rogosa sharp and then colonies were counted. Colonies tested for catalase reaction, Gram-staining and microscopic examination.Results:The result of this study showed that the overall incidence of positive Lactobacillus in mother's milk was 87.5%. The results based on (infant gender, mode of delivery, rural or urban and lactation time) rural or urban and lactation time were significant (P < 0.05). The results showed that all of the variables were significant in this regression model (P < 0.001). The median of log10 Lactobacillus counts in rural mothers, vaginal delivery, infant male gender and Lactation time for first 3-month were meaningfully high.Conclusions:The findings of this study about the breast milk Lactobacillus potential probiotic bacteria of healthy Iranian mothers, suggested that the breast milk microbiome is significantly influenced by several factors, mode of delivery, rural or urban and lactation time.
Pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG family are eukaryotic membrane proteins that pump an array of compounds across organelle and cell membranes. Overexpression of the archetype fungal PDR transporter Cdr1 is a major cause of azole antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR transporter has been solved. The objective of this project was to investigate the role of the 23 Cdr1 cysteine residues in the stability, trafficking, and function of the protein when expressed in the eukaryotic model organism, Saccharomyces cerevisiae. The biochemical characterization of 18 partially cysteine-deficient Cdr1 variants revealed that the six conserved extracellular cysteines were critical for proper expression, localization, and function of Cdr1. They are predicted to form three covalent disulfide bonds that stabilize the large extracellular domains of fungal PDR transporters. Our investigations also revealed a novel nucleotide-binding domain motif, GX2[3]CPX3NPAD/E, at the peripheral cytosolic apex of ABCG transporters that possibly contributes to the unique ABCG transport cycle. With this knowledge, we engineered an “almost cysteine-less,” yet fully functional, Cdr1 variant, Cdr1P-CID, that had all but the six extracellular cysteines replaced with serine, alanine, or isoleucine (C1106I of the new motif). It is now possible to perform cysteine-cross-linking studies that will enable more detailed biochemical investigations of fungal PDR transporters and confirm any future structure(s) solved for this important protein family. IMPORTANCE Overexpression of the fungal pleiotropic drug resistance (PDR) transporter Cdr1 is a major cause of antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR ABC transporter has been solved. Cdr1 contains 23 cysteines; 10 are cytosolic and 13 are predicted to be in the transmembrane or the extracellular domains. The objective of this project was to create, and biochemically characterize, CDR1 mutants to reveal which cysteines are most important for Cdr1 stability, trafficking, and function. During this process we discovered a novel motif at the cytosolic apex of PDR transporters that ensures the structural and functional integrity of the ABCG transporter family. The creation of a functional Cys-deficient Cdr1 molecule opens new avenues for cysteine-cross-linking studies that will facilitate the detailed characterization of an important ABCG transporter family member.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.