Power system operation is of vital importance and has to be developed far beyond today's practice in order to meet future needs like the integration of renewables or battery storage systems [3]. In fact, nearly all European countries faced an abrupt and very important growth of Renewable Energy Sources (RES) such as wind and photovoltaic that are intrinsically variable and up to some extent difficult to predict. In addition, an increase of new types of electric loads such as air conditioning, heat pumps, and electric vehicles; and a reduction of traditional generation power plants can be observed. Hence, the level of complexity of system operation increases steadily. To avoid dramatic consequences, there is an urgent need for a system flexibility increase [18]. Also the roll-out of smart grids applications and solutions such as Information and Communication Technology (ICT) and power electronic-based grid components is of particular importance in order to realize a number of advanced system functionalities (power/energy management, demand side management, ancillary services provision, etc.) [6,7,13,14].In such a Cyber-Physical Energy System (CPES)-also denoted as "Smart Grid" in the literature [3]-this also requires distributed intelligence on different levels in the system as outlined in Fig. 1 and Table 1. Flexibility, adaptability, scalability, and autonomy are key points to realize the automation systems and component controllers of CPES [13]. Also, interoperability and open interfaces are important to enable the above described functions on the different levels of intelligence [6]. Hence, such kind