One promising treatment of localized osteochondral defects in the knee joint may be the implantation of in vitro tissue-engineered osteochondral constructs. A crucial aspect of this kind of osteochondral construct is the bonding between the bone-scaffold and scaffold-based chondral layer. Here, a 90 ∘ peel off test is proposed as an appropriate method to measure the integration of cartilage to bone in osteochondral constructs for different primary methods of bonding the cartilage scaffold to the bone scaffold, with and without seeded chondroblasts. The method was developed and then tested on tissue-engineered constructs. The force/displacement data obtained allow determination of both the maximum force and the total energy required to separate the two layers. The tests showed good reproducibility and good discrimination between measurements as a function of seeding times. Average maximum peel-off forces varied between 10 mN for fibrin glue only to 575 mN for constructs with cells after four weeks of incubation. Linear regression of the area under the curve (AUC) as a function of maximum force shows a high correlation between the two parameters with R 2 = 0.97. The main limitation of the test is that the data provide only a modest ability to decide how uniform the bond is over the area between the two layers.