The plasma membrane
(PM) is often described as a wall, a physical
barrier separating the cell cytoplasm from the extracellular matrix
(ECM). Yet, this wall is a highly dynamic structure that can stretch,
bend, and bud, allowing cells to respond and adapt to their surrounding
environment. Inspired by shapes and geometries found in the biological
world and exploiting the intrinsic properties of conductive polymers
(CPs), several biomimetic strategies based on substrate dimensionality
have been tailored in order to optimize the cell–chip coupling.
Furthermore, device biofunctionalization through the use of ECM proteins
or lipid bilayers have proven successful approaches to further maximize
interfacial interactions. As the bio-electronic field aims at narrowing
the gap between the electronic and the biological world, the possibility
of effectively disguising conductive materials to “trick”
cells to recognize artificial devices as part of their biological
environment is a promising approach on the road to the seamless platform
integration with cells.