Microelectrode arrays increasingly serve to extracellularly record in parallel electrical activity from many excitable cells without inflicting damage to the cells by insertion of microelectrodes. Nevertheless, apart from rare cases they suffer from a low signal to noise ratio. The limiting factor for effective electrical coupling is the low seal resistance formed between the plasma membrane and the electronic device. Using transmission electron microscope analysis we recently reported that cultured Aplysia neurons engulf protruding micron size gold spines forming tight apposition which significantly improves the electrical coupling in comparison with flat electrodes (Hai et al 2009 Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices J. R. Soc. Interface 6 1153-65). However, the use of a transmission electron microscope to measure the extracellular cleft formed between the plasma membrane and the gold-spine surface may be inaccurate as chemical fixation may generate structural artifacts. Using live confocal microscope imaging we report here that cultured Aplysia neurons engulf protruding spine-shaped gold structures functionalized by an RGD-based peptide and to a significantly lesser extent by poly-l-lysine. The cytoskeletal elements actin and associated protein cortactin are shown to organize around the stalks of the engulfed gold spines in the form of rings. Neurons grown on the gold-spine matrix display varying growth patterns but maintain normal electrophysiological properties and form functioning synapses. It is concluded that the matrices of functionalized gold spines provide an improved substrate for the assembly of neuro-electronic hybrids.
Varicosities are ubiquitous neuronal structures that appear as local swellings along neurites of invertebrate and vertebrate neurons. Surprisingly little is known about their cell biology. We use here cultured Aplysia neurons and demonstrate that varicosities are motile compartments that contain large clusters of organelles. The content of varicosities propagate along neurites within the plasma membrane "sleeve", split and merge, or wobble in place. Confocal imaging, retrospective immunolabeling, electron microscopy and pharmacological perturbations reveal that the motility of the varicosities' organelle content occurs in concert with an actin scaffold and is generated by actomyosin motors. Despite the motility of these organelle clusters within the cytoplasm along the neurites, elevation of the free intracellular calcium concentration within varicosities by trains of action potentials induces exocytosis followed by membrane retrieval. Our observations demonstrate that varicosities formed in the absence of postsynaptic cells behave as "ready to go" prefabricated presynaptic terminals. We suggest that the varicosities' motility serves to increase the probability of encountering a postsynaptic cell and to rapidly form a functional synapse.
One of the major problems in assembling efficient neuro-electronic hybrids systems is the low electrical coupling between the components. This is mainly due to the low resistance, extracellular cleft formed between the cell's plasma membrane and the substrate to which it adhere. This cleft shunts the current generated by the neuron, or the device and thus reduces the signal to noise ratio. To increase the clefts electrical resistance we fabricated gold micronails that protrude from the transistor gate surface. The micronails were functionalized by phagocytosis facilitating peptides. Cultured neurons readily engulf the functionalized micronails forming tight physical contact between the cells and the surface of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.