Background
Leucojum aestivum L. is an important medicinal plant which produces Amaryllidaceae alkaloids, especially galanthamine and lycorine. Research is currently exploring the possibility of producing these alkaloids using biotechnological methods, including in vitro cultures. The biosynthesis of alkaloids may be affected by the types and concentrations of carbohydrate sources used in the medium. In the present investigation we performed such studies on in vitro cultures of L. aestivum with a view to obtaining plant material of good quality, characterized, in particular, by a high content of valuable Amaryllidaceae alkaloids.
Methods
We examined the effects of various types of carbohydrate sources—sucrose, glucose, fructose and maltose—at different concentrations (30, 60 and 90 g/L)—on the quality of L. aestivum plants grown in the RITA® bioreactor. The plants’ quality was assessed by their biomass increments, as well by as analysing photosynthetic pigments, endogenous sugar, phenolics and Amaryllidaceae alkaloid content. We also investigated the effect of sugars on the activity of the antioxidant enzymes catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD).
Results
The highest biomass increments were observed in plants cultivated in the medium containing 90 g/L sucrose. The highest CAT activity was noted in cultures growing in the medium supplemented with 90 g/L maltose, while the highest POD activity was observed in the presence of 90 g/L fructose and 60 g/L maltose. No differences in SOD activity were observed. Moreover, the sugars did not affect the contents of chlorophyll a and carotenoids, whereas the highest amount of chlorophyll b was recorded in plants growing in the medium with 60 g/L maltose. No statistically significant differences were observed in the contents of endogenous sugars and phenolics in any in vitro conditions. However, the addition of sugar had a decisive effect on the biosynthesis of the Amaryllidaceae alkaloids. The highest distribution of alkaloids occurred in plants cultured in the medium containing 60 g/L sucrose. Six Amaryllidaceae alkaloids were detected in the plant tissue. The addition of 30 g/L fructose in the medium resulted in the accumulation of five alkaloids, including ismine, which was not identified in other analysed tissues. The highest concentration of galanthamine was observed in plants cultured in the presence of 30 g/L fructose and 60 g/L sucrose (39.2 and 37.5 µg/g of dry weight (DW), respectively). The plants grown in the medium containing 60 g/L sucrose exhibited the highest lycorine content (1048 µg/g of DW).
Conclusions
The type and concentration of sugar used in the medium have an essential influence on the biosynthesis of Amaryllidaceae alkaloids in L. aestivum plants cultured in a RITA® bioreactor. The results point to an interesting approach for commercial production of galanthamine and lycorine.