2017
DOI: 10.1016/j.jpowsour.2017.03.053
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced cycle stability of LiCoPO 4 by using three-dimensionally ordered macroporous polyimide separator

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
26
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 38 publications
(27 citation statements)
references
References 38 publications
0
26
0
1
Order By: Relevance
“…All spectra are composed of a semicircle in the high frequency and a sloping line in the low frequency range. The semicircle and the sloping line correspond to the charge transfer resistance and warburg impedance associated with diffusion of the ion, respectively . The diameter of semicircle is 5.5 and 16.5 Ω for ceramic separator and pristine separator, respectively.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…All spectra are composed of a semicircle in the high frequency and a sloping line in the low frequency range. The semicircle and the sloping line correspond to the charge transfer resistance and warburg impedance associated with diffusion of the ion, respectively . The diameter of semicircle is 5.5 and 16.5 Ω for ceramic separator and pristine separator, respectively.…”
Section: Resultsmentioning
confidence: 99%
“…The semicircle and the sloping line correspond to the charge transfer resistance and warburg impedance associated with diffusion of the ion, respectively. 35 The diameter of semicircle is 5.5 and 16.5 X for ceramic separator and pristine separator, respectively. Previous studies 36,37 have reported that smaller semicircle diameter implies much lower interfacial impedance between separators and electrodes.…”
Section: Electrochemical Properties Of Various Separatorsmentioning
confidence: 99%
“…LCP 的理论比容量(170 mAh/g)与LFP (167 mAh/g) 基本相当 [5] , 而工作电压平台相对较高(4.8 V), 所 以其理论能量密度(800 Wh/kg)比 LFP (578 Wh/kg) [6] 高~40%。此外, 与 LFP、LMP、LNP 相比, LCP 的 空穴极化子迁移率最快, 即电子电导率最高 [7] 。与 LiCoO 2 (Co: 60.2wt%)相比, LCP (Co: 36.6wt%)的钴 元素含量更低, 导致其材料成本更低 [8][9] 。但是, 与 LFP 相似, 纯相 LCP 的电导率极低 [10] (~10 -9 S/cm), 基本属于绝缘体。 此外, LCP 的工作电压较高(4.8 V), 使得电解液容易分解且与体系内的 Co 3+ 发生反应, 从而影响 LCP 正极材料的电化学性能。 目前主流的解决方案有三种: (1) 对 LCP 正极 材料进行表面包覆, 通过保护正极提高材料充放电 性 能 [11] ; (2) 通 过 Y 3+ [11] 、 Mg 2+ [12] 、 Mn 2+ [12][13] 、 Ni 2+ [12] 、V 3+ [14] 、Fe 2+ [15] 等元素掺杂来提高材料的导 电性; (3) 通过制备方法实现对 LCP 正极材料微观 形貌的控制, 从结构上改善 LCP 的电化学性能。目 前用于制备 LCP 的主流方法为水热/溶剂热法 [16][17][18] 、 溶胶凝胶法 [19][20] 、固相反应法 [21][22] 、多元醇法 [23] 等, 其中, 水热/溶剂热法在样品的结晶度及微观形 貌控制方面有很大优势。 Ludwig 等 [16]…”
Section: 研究与应用严重受阻。unclassified
“…In previous works, we have developed materials suitable for lithium metal rechargeable batteries in order to improve the cycle performance. An ultrafine porous polyimide (PI) membrane with three-dimensionally ordered macroporous (3DOM) structure [13][14][15][16][17] has a high porosity of ca. 70%, and an ethylene carbonate (EC) solution (the best electrolyte for lithium metal) which can hardly permeate into a commercially available polyolefin separator, but can easily permeate into a 3DOM PI membrane (Figs.…”
Section: Introductionmentioning
confidence: 99%