Background: Generally, glucose is transformed into pyruvate from glycolysis before the target products acetoin and 2,3-butanediol (2,3-BDO) are formed. Pentose Phosphate Pathway (PPP) is an inefficient synthetic pathway for pyruvate production from glucose in Bacillus subtilis. Previously, it was found that engineered PPP in B. subtilis unbalanced NADH and NADPH regeneration systems and affected acetoin and 2,3 -BDO production.Results: In this study, metabolic engineering strategies were proposed to redistribute carbon flux to 2,3-BDO via reconstructing intracellular cofactors regeneration systems. Firstly, extra copies of glucose dehydrogenase (GDH)and an exogenous NADPH-dependent 2,3-BDO dehydrogenase (TDH) were introduced into the GRAS strain B. subtilis 168 to introduce an exogenous NADPH/NADP + regeneration system and broaden 2,3-BDO production pathway. It was found that overexpressing the NADPH/NADP + regeneration system effectively improved 2,3-BDO production and inhibited NADH-dependent by-products accumulation. Subsequently, the disruption of lactate dehydrogenase (encoded by ldh ) by insertion of the transcriptional regulator ALsR, essential for the expression of alsSD (encoding two key enzymes for the conversion of pyruvate to acetoin) in B. subtilis, resulted in the recombinant strain in which alsSD was overexpressed and the pathway to lactate was blocked simultaneously. On fermentation by the result engineered strain, the highest 2,3-BDO concentration increased by18.43%, while the titers of main byproducts acetoin and lactate decreased by 22.03% and 64%, respectively.Conclusion: In this study, it shows that engineering PPP and reconstructing intracellular cofactors regeneration system could be an alternative strategy in the metabolic engineering of 2,3-BDO production in B. subtilis .