We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405–650 nm). We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405–447 nm). Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ∼11%, in the range 405–447 nm), but elongated within the stop-band (by ∼13%, in the range 448–482 nm). We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of “solvent-compatible” non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures