What's your role? New oligothiophene-vinylene compounds have been synthesized to study the role of the conjugated chain in two different cases (see scheme; MV=mixed valence). The electronic and molecular structures were analyzed by means of electronic, X-ray photoelectron, and Raman spectroscopy, together with thermo spectroscopy, electrochemistry, and DFT calculations.New oligothiophene-vinylene compounds have been synthesized in order to study the role of the conjugated chain in two different cases: 1) when push-pull action operates between an electron-donor and an electron-acceptor group at the ends of the thiophene-vinylene conjugated chain, and 2) when mixed-valence action is induced by single oxidation of the same chain functionalized at both terminal positions with ferrocene groups leading to competition between the donor groups. The electronic and molecular structures are analyzed by means of electronic, X-ray photoelectron and Raman spectroscopies, together with thermospectroscopy, electrochemistry and density functional theory calculations. The cyclic voltammetry processes have been followed by spectrochemistry. It is shown that the radical cation of the diferrocenyl derivative is a class III mixed-valence system (i.e., fully delocalized) according to its Raman spectrum. Moreover, by Raman thermo-spectroscopy the thermal transition of this radical cation from a delocalized (class III, room temperature) to a localized (class II, -160 degrees C) state is scanned. In all cases the Raman study is paralleled by an electronic absorption spectroscopic analysis. Structure-property relationships are proposed for molecules of two important fields of very active research as that of the non-linear optics (i.e., organic optoelectronic) and that of the mixed-valence systems (i.e., charge-transfer processes).