Yeast cells were immobilized on calcium alginate beads prepared using different calcium concentrations. The compression properties of the immobilized beads (e.g., softness index and retardation time for compression) were strongly affected by the calcium concentration. The effects of the bead properties on filtration characteristics, such as cake porosity, specific cake filtration resistance, cake compression creeping effect, and cake compressibility, were analyzed using a dead-end filtration system. The filtration curve of yeast-immobilized beads had an "S" shape, similar to that of soft gel particles. The cake compression behavior and variation in cake properties were directly reflected on the curve trend. The Voigt in the series model was employed to describe variation in cake porosity with time during a compression.The yeast immobilization increased the bead softness; therefore, the porosity of a cake formed by yeast-immobilized beads was lower than that formed by pure calcium alginate beads. The cakes formed by yeast-immobilized beads possessed a high compressibility of approximately 1.0 and a high softness index of approximately 1.5. The beads prepared using lower calcium concentrations had higher softness, shorter retardation times for compression, higher cake compressibility, lower cake porosity, and higher specific cake filtration resistance. The results demonstrated that immobilizing yeast cells on calcium alginate beads is beneficial for retaining higher yeast activity than that of freely suspended yeast. However, the activity levels of yeast immobilized using different calcium concentrations were nearly the same after 3 h. Therefore, using high concentrations of calcium for yeast immobilization is beneficial for improving yeast activity and filtration characteristics.