Yeast cells were immobilized on calcium alginate beads prepared using different calcium concentrations. The compression properties of the immobilized beads (e.g., softness index and retardation time for compression) were strongly affected by the calcium concentration. The effects of the bead properties on filtration characteristics, such as cake porosity, specific cake filtration resistance, cake compression creeping effect, and cake compressibility, were analyzed using a dead-end filtration system. The filtration curve of yeast-immobilized beads had an "S" shape, similar to that of soft gel particles. The cake compression behavior and variation in cake properties were directly reflected on the curve trend. The Voigt in the series model was employed to describe variation in cake porosity with time during a compression.The yeast immobilization increased the bead softness; therefore, the porosity of a cake formed by yeast-immobilized beads was lower than that formed by pure calcium alginate beads. The cakes formed by yeast-immobilized beads possessed a high compressibility of approximately 1.0 and a high softness index of approximately 1.5. The beads prepared using lower calcium concentrations had higher softness, shorter retardation times for compression, higher cake compressibility, lower cake porosity, and higher specific cake filtration resistance. The results demonstrated that immobilizing yeast cells on calcium alginate beads is beneficial for retaining higher yeast activity than that of freely suspended yeast. However, the activity levels of yeast immobilized using different calcium concentrations were nearly the same after 3 h. Therefore, using high concentrations of calcium for yeast immobilization is beneficial for improving yeast activity and filtration characteristics.
The Hadamengou deposit is the largest gold deposit in Inner Mongolia. However, given that the sources of ore-forming alkaline magmatic hydrothermal solutions and ore-controlling structures are still controversial, the theories behind the genesis of the deposit have been controversial. In this study, four controlled-source audio magnetotellurics (CSAMT) and spectral induced polarization (SIP) profiles in the mining area were used to obtain the underground resistivity model and the pseudo section map of the apparent frequency dispersivity based on fine inversion. In the resistivity model, there are two high-resistivity blocks with resistivity greater than 3000 Ω m and three low-resistivity channels with resistivity less than 50 Ω m. Combined with the regional geological and drilling data, it is inferred that the high-resistance bodies, R4 and R5, may be alkaline magmatic intrusions related to multiple stages of magmatic hydrothermal activities, ranging from the Precambrian to Yanshanian periods. The highly conductive channels, C3, C5, and C4, may represent the Baotou-Hohhot fault, secondary faults, and ductile shear zone, respectively, which were formed in the Precambrian era and underwent multiple activations during the Hercynian to Yanshanian period. According to the spatial relationship, it is inferred that the ductile shear zone is an important ore-controlling and ore-hosting structure. However, the Baotou–Hohhot fault may be a pre-metallogenic fault rather than an ore-controlling fault. By comparing the resistivity model with the pseudo section of the apparent frequency dispersivity, it was found that all the known gold veins are located in the superimposed area of low resistivity and high-frequency dispersivity. It is speculated that the ductile shear zone outside the alkaline magmatic rock with the superimposed characteristics of low resistivity and high-frequency dispersivity is the favorable area for mineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.