Although the majority of acute myeloid leukemia (AML) patients initially respond to chemotherapy, many patients subsequently relapse; the mechanistic basis for AML persistence following chemotherapy has not been delineated. Recurrent somatic mutations in DNA methyltransferase 3A (DNMT3A), most frequently at arginine 882 (DNMT3Amut), are observed in AML1–3 and in individuals with clonal hematopoiesis in the absence of leukemic transformation4,5. DNMT3Amut AML patients have an inferior outcome when treated with standard-dose daunorubicin-based induction chemotherapy6,7, suggesting that DNMT3Amut cells persist and drive relapse8. Here we show that Dnmt3amut induces hematopoietic stem cell (HSC) expansion, cooperates with Flt3ITD and Npm1c to induce AML in vivo, and promotes resistance to anthracycline chemotherapy. In AML patients, DNMT3AR882 mutations predict for minimal residual disease (MRD), underscoring their role in AML chemoresistance. DNMT3Amut cells show impaired nucleosome eviction and chromatin remodeling in response to anthracyclines, resulting from attenuated recruitment of histone chaperone SPT-16 following anthracycline exposure. This defect leads to an inability to sense and repair DNA torsional stress, which results in increased mutagenesis. Our studies identify a critical role for DNMT3AR882 mutations in driving AML chemoresistance, and highlight the importance of chromatin remodeling in response to cytotoxic chemotherapy.