To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress–related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.
Data availability. All of the sequencing data is available via Gene Expression Omnibus (GEO) under the accession number GSE117826.
Genetic and epigenetic intra-tumoral heterogeneity cooperate to shape the evolutionary course of cancer 1 . Chronic lymphocytic leukemia (CLL) is a highly informative model for cancer evolution as it undergoes substantial genetic diversification and evolution with therapy 2 , 3 . The CLL epigenome is also an important disease-defining feature 4 , 5 , and growing CLL populations diversify through stochastic DNA methylation (DNAme) changes – epimutations 6 . However, previous studies based on bulk DNAme sequencing could not answer whether epimutations affect CLL populations homogenously. To measure epimutation rate at single-cell resolution, we applied multiplexed single-cell reduced representation bisulfite sequencing (MscRRBS) to healthy donors B cell and CLL patient samples. We observed that the common clonal CLL origin results in consistently elevated epimutation rate, with low cell-to-cell epimutation rate variability. In contrast, variable epimutation rates across normal B cells reflect diverse evolutionary ages across the B cell differentiation trajectory, consistent with epimutations serving as a molecular clock. Heritable epimutation information allowed high-resolution lineage reconstruction with single-cell data, applicable directly to patient samples. CLL lineage tree shape revealed earlier branching and longer branch lengths than normal B cells, reflecting rapid drift after the initial malignant transformation and a greater proliferative history. MscRRBS integrated with single-cell transcriptomes and genotyping confirmed that genetic subclones map to distinct clades inferred solely based on epimutation information. Lastly, to examine potential lineage biases during therapy, we profiled serial samples during ibrutinib-associated lymphocytosis, and identified clades of cells preferentially expelled from the lymph node with therapy, marked by distinct transcriptional profiles. The single-cell integration of genetic, epigenetic and transcriptional information thus charts CLL’s lineage history and its evolution with therapy.
DNA methylation pattern mapping is heavily studied in normal and diseased tissues. A variety of methods have been established to interrogate the cytosine methylation patterns in cells. Reduced representation of whole genome bisulfite sequencing was developed to detect quantitative base pair resolution cytosine methylation patterns at GC-rich genomic loci. This is accomplished by combining the use of a restriction enzyme followed by bisulfite conversion. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) increases the biologically relevant genomic loci covered and has been used to profile cytosine methylation in DNA from human, mouse and other organisms. ERRBS initiates with restriction enzyme digestion of DNA to generate low molecular weight fragments for use in library preparation. These fragments are subjected to standard library construction for next generation sequencing. Bisulfite conversion of unmethylated cytosines prior to the final amplification step allows for quantitative base resolution of cytosine methylation levels in covered genomic loci. The protocol can be completed within four days. Despite low complexity in the first three bases sequenced, ERRBS libraries yield high quality data when using a designated sequencing control lane. Mapping and bioinformatics analysis is then performed and yields data that can be easily integrated with a variety of genome-wide platforms. ERRBS can utilize small input material quantities making it feasible to process human clinical samples and applicable in a range of research applications. The video produced demonstrates critical steps of the ERRBS protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.