Ground radar stations observing specific regions of interest nowadays provide detections in the form of point-clouds. This article focuses on a framework that consists of an elliptical multitarget tracker, referred to as Principal-Axes based Kalman Filter (PAKF)-based Joint Probabilistic Data Association (JPDA) (PAKF-JPDA), to enable maritime traffic monitoring. The framework touches on two major stages, target detection and target tracking. For the former, we employed a clustering approach and for the latter, we presented a data-association-based version of the PAKF tracker with an automatic track management functionality. The framework’s benefits are demonstrated when it is applied to the radar streaming in a harbor setting based on a homogeneous multisensor tracking system by comparing our results against their corresponding reference data with visualizations, including performance measures.