In this article, a theoretical design of enhanced surface plasmon resonance is proposed. The suggested sensor is composed of titanium, silver, graphene, photonic crystal, and a sensing layer. This structure is used to detect cancer cells and hemoglobin in blood plasma based on their refractive indices. Different parameters such as sensitivity and figure of merit are studied at an operating wavelength of 633 nm. The recorded sensitivity and figure of merit are 72 degrees/RIU and 346 RIU−1. The ability of the proposed sensor to detect cancer cells and blood plasma concentration will be investigated.