Previous studies using mannose-binding lectin (MBL) and complement C4 deficient mice have suggested that the lectin pathway (LP) is not required for the development of inflammatory arthritis in the collagen antibody-induced arthritis (CAIA) model. MBL, ficolins and collectin-11 are key LP pattern recognition molecules that associate with three serine proteases, MASP-1, MASP-2 and MASP-3, and also with two MBL-associated proteins designated sMAP and MAp44. Recent studies have shown that MAp44, an alternatively spliced product of the MASP-1/3 gene, is a competitive inhibitor of the binding of the recognition molecules to all three MASPs. In these studies we examined the effect of treatment of mice with adenovirus (Ad) programmed to express human MAp44 (AdhMAp44) on the development of CAIA. AdhMAp44 and Ad programming Green fluorescent protein (AdGFP) expression were injected intraperitoneally in C57BL/6 wild-type mice prior to the induction of CAIA. AdhMAp44 significantly reduced the clinical disease activity score (CDA) by 81% compared to mice injected with AdGFP. Similarly, histopathologic injury scores for inflammation, pannus, cartilage and bone damage, as well as C3 deposition in the cartilage and synovium, were significantly reduced by AdhMAp44 pretreatment. Mice treated with AdmMAp44, programming expression of mouse MAp44, also showed significantly decreased CDA and histopathologic injury scores. Additionally, administration of AdhMAp44 significantly diminished the severity of Ross River Virus-induced arthritis, a LP-dependent model. Our study provides conclusive evidence that an intact complement LP is essential to initiate CAIA, and that MAp44 may be an appropriate treatment for inflammatory arthritis.