Advances in nanotechnology, combined with the use of natural products, represent a promissing research field. Brazil is a country of a rich biodiversity, especially in the Amazon forest. Fruits commonly used by local communities, such as bacaba (Oenocarpus bacaba), are potentially important for prospection of industrial applications of natural products. In nanotechnology, microemulsions stand out for providing a modified release to conveyed substances. This work aimed to develop microemulsionated formulations of bacaba oil, characterize them and evaluate their stability. We determined the HLB (hydrophile-lipophilic balance) of bacaba oil for formulation development. Six formulations were selected from pseudoternary diagrams, which indicated the proportions of surfactants, aqueous phase and bacaba oil. The viability of these formulations was evaluated through stability tests. We provided the rheological characterization of the formulations, evaluated their potential antioxidant activity through the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging method, and determined the hydrodynamic diameter of the droplets. The microemulsions were stable throughout the test period. Droplet diameter was below 200 nm, and the microemulsions were characterized as newtonian fluids, presenting an increase in antioxidant activity when compared with the diluted oil. Our results confirm the potential of bacaba oil in microemulsionated formulation as a suitable carrier for active compounds.