The structural and electronic properties of low index (100) and (111) ZrO 2 -CeO 2 interfaces are analyzed on the basis of density functional theory calculations. The formation energy and relative stability of substitutional defects, oxygen vacancies, and vacancy-dopant complexes are investigated for the (100) orientation. By comparing these results with the ones obtained in bulk structures, we provide a possible explanation for the higher experimental ionic conductivity measured at the interface.