Background2,3-Butanediol (2,3-BD) can be used as a liquid fuel additive to replace petroleum oil, and as an important platform chemical in the pharmaceutical and plastic industries. Microbial production of 2,3-BD by Bacillus licheniformis presents potential advantages due to its GRAS status, but previous attempts to use this microorganism as a chassis strain resulted in the production of a mix of D-2,3-BD and meso-2,3-BD isomers.ResultsThe aim of this work was to develop an engineered strain of B. licheniformis suited to produce the high titers of the pure meso-2,3-BD isomer. Glycerol dehydrogenase (Gdh) was identified as the catalyst for D-2,3-BD biosynthesis from its precursor acetoin in B. licheniformis. The gdh gene was, therefore, deleted from the wild-type strain WX-02 to inhibit the flux of acetoin to D-2,3-BD biosynthesis. The acoR gene involved in acetoin degradation through AoDH ES was also deleted to provide adequate flux from acetoin towards meso-2,3-BD. By re-directing the carbon flux distribution, the double-deletion mutant WX-02ÎgdhÎacoR produced 28.2 g/L of meso-2,3-BD isomer with >99 % purity. The titer was 50 % higher than that of the wide type. A bench-scale fermentation by the double-deletion mutant was developed to further improve meso-2,3-BD production. In a fed-batch fermentation, meso-2,3-BD titer reached 98.0 g/L with a purity of >99.0 % and a productivity of 0.94 g/Lâh.ConclusionsThis work demonstrates the potential of producing meso-2,3-BD with high titer and purity through metabolic engineering of B. licheniformis.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0522-1) contains supplementary material, which is available to authorized users.