Thrips (Thysanoptera: Thripidae) are important pests of seedling cotton and their damage can delay crop maturity and/or reduce yield. Plant resistance to thrips in cotton would reduce the need to treat crops with insecticides for their control. This would support integrated pest management strategies by reducing the risk of selecting insecticide resistance in concomitant pests and of disrupting the natural enemy complex. Traits that reduce thrips abundance in cotton are poorly understood, but dense leaf hairs and high gossypol content are implicated to negatively affect thrips. Furthermore, some diploid cottons are resistant against thrips. Thrips abundance and damage on a range of Gossypium (Malvaceae) genotypes including hairy leaf, smooth leaf (glabrous), okra leaf shape, and diploid species was evaluated over four crop seasons. Thrips were significantly less abundant and they caused less damage on diploid cotton genotypes from Gossypium arboreum L. (BM13H, Roseum A 2 56), Gossypium thurberi Tod. (GOS5310), and Gossypium trilobum (Moc. & Sess. ex DC.) Skov. (GOS5332) than on the standard commercial Gossypium hirsutum L. cv. Sicot 71. There was no significant relationship between thrips abundance or damage and leaf hairiness, leaf hardness, or leaf shape, though conclusions about the value of these traits must be made cautiously as they are confounded across genotypes that differ in a range of traits simultaneously. The diploid cottons had a lower damage per thrips ratio, indicating that they are more tolerant of thrips feeding damage and thus could be valuable sources of host plant resistance to thrips.