Alterations of the amount and quality of food consumed during ontogeny can affect different life-history traits, such as growth rate, developmental time, survival, adult size, and fitness. Understanding the dynamics of such metabolic and energetic pathways and investments is particularly challenging in the case of holometabolous insects due to their strikingly different life stages. We show how whole life-cycle energy and mass budgets can be achieved for holometabolic insects through dynamic energy budget (DEB) theory, permitting the fate of acquired and stored nutrients to be followed over a complete life-cycle. We applied the DEB theory to model the whole life-cycle energetics of an endoparasitic wasp, Venturia canescens (Hymenoptera: Ichneumonidae). Data on embryo, larval, and pupal dry mass, imago longevity, and fecundity were used for assessing the goodness of fit of the model. Our model predicted the growth curves of the larval and pupal stages, the number of eggs laid by the imago through time, and lifespan events, such as the different developmental times of the parasitoid. The model enabled us to distinguish and follow the energy invested in eggs through income and capital reserves. The mechanisms leading to the double costs of being small (a shorter life under starving conditions and fewer eggs) were identified by running the model for varying amounts of food eaten early in life, according to host sizes. The final larval instar harvests around 60 times the energy of a recently hatched larva. Around 90% of this energy is then used during pupation to build the structure of the imago and to pay maintenance. Imagoes, therefore, emerge with only a small percentage of the energy stored by the last instar larvae. Our study shows that, despite being small, this percentage of energy stored during the parasitoid development has a great impact on adult fitness, the loss of which cannot be compensated for by a rich adult environment. Our model is generic and has applications for a wide range of applied and theoretical questions about insect energetics, from population dynamics in multitrophic systems to responses to climate change and life-history strategies. (Résumé d'auteur
1. Australian crab spiders exploit the plant–pollinator mutualism by reflecting UV light that attracts pollinators to the flowers where they sit. However, spider UV reflection seems to vary broadly within and between individuals and species, and we are still lacking any comparative studies of prey and/or predator behaviour towards spider colour variation. 2. Here we looked at the natural variation in the coloration of two species of Australian crab spiders, Thomisus spectabilis and Diaea evanida, collected from the field. Furthermore, we examined how two species of native bees responded to variation in colour contrast generated by spiders sitting in flowers compared with vacant flowers. We used data from a bee choice experiment with D. evanida spiders and Trigona carbonaria bees and also published data on T. spectabilis spiders and Austroplebeia australis bees. 3. In the field both spider species were always achromatically (from a distance) undetectable but chromatically (at closer range) detectable for bees. Experimentally, we showed species-specific differences in bee behaviour towards particular spider colour variation: T. carbonaria bees did not show any preference for any colour contrasts generated by D. evanida spiders but A. australis bees were more likely to reject flowers with more contrasting T. spectabilis spiders. 4. Our study suggests that some of the spider colour variation that we encounter in the field may be partly explained by the spider's ability to adjust the reflectance properties of its colour relative to the behaviour of the species of prey available. (Résumé d'auteur
Although the behaviour of animals facing the conflicting demands of increasing foraging success and decreasing predation risk has been studied in many taxa, the response of pollinators to variations in both factors has only been studied in isolation. We compared visit rates of two pollinator species, hoverflies and honeybees, to 40 Chrysanthemum segetum patches in which we manipulated predation risk (patches with and without crab spiders) and nectar availability (rich and poor patches) using a full factorial design. Pollinators responded differently to the tradeoff between maximising intake rate and minimising predation risk: honeybees preferred rich safe patches and avoided poor risky patches while the number of hoverflies was highest at poor risky patches. Because honeybees were more susceptible to predation than hoverflies, our results suggest that, in the presence of competition for resources, less susceptible pollinators concentrate their foraging effort on riskier resources, where competition is less severe. Crab spiders had a negative effect on the rate at which inflorescences were visited by honeybees. This effect was mediated through changes in the foraging strategy of honeybees, and could, in principle, be reversed by increasing nectar productivity of inflorescences. Our study shows that both pollinator species responded simultaneously and differently to variations in food reward and predation risk, and highlights the importance of studying the foraging strategies of pollinators in order to fully understand how plant–pollinator interactions are established. (Résumé d'auteur
BackgroundIt is normally thought that deep corolla tubes evolve when a plant's successful reproduction is contingent on having a corolla tube longer than the tongue of the flower's pollinators, and that pollinators evolve ever-longer tongues because individuals with longer tongues can obtain more nectar from flowers. A recent model shows that, in the presence of pollinators with long and short tongues that experience resource competition, coexisting plant species can diverge in corolla-tube depth, because this increases the proportion of pollen grains that lands on co-specific flowers.Methodology/Principal FindingsWe have extended the model to study whether resource competition can trigger the co-evolution of tongue length and corolla-tube depth. Starting with two plant and two pollinator species, all of them having the same distribution of tongue length or corolla-tube depth, we show that variability in corolla-tube depth leads to divergence in tongue length, provided that increasing tongue length is not equally costly for both species. Once the two pollinator species differ in tongue length, divergence in corolla-tube depth between the two plant species ensues.Conclusions/SignificanceCo-evolution between tongue length and corolla-tube depth is a robust outcome of the model, obtained for a wide range of parameter values, but it requires that tongue elongation is substantially easier for one pollinator species than for the other, that pollinators follow a near-optimal foraging strategy, that pollinators experience competition for resources and that plants experience pollination limitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.