2018
DOI: 10.1007/s11042-018-6556-6
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing multimodal deep representation learning by fixed model reuse

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2022
2022
2023
2023

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 33 publications
0
2
0
2
Order By: Relevance
“…erefore, an information retrieval method based on hash transformation appears. is method is based on the paired sample pairs of different modal data, learns the corresponding hash transformation, maps the corresponding modal data features to the Hamming binary space, and then realizes faster cross-modal retrieval in this space [21]. e premise of hash transformation is that the hash codes of similar samples are also similar.…”
Section: Cross-modal Retrieval Methods Based On Hashmentioning
confidence: 99%
“…erefore, an information retrieval method based on hash transformation appears. is method is based on the paired sample pairs of different modal data, learns the corresponding hash transformation, maps the corresponding modal data features to the Hamming binary space, and then realizes faster cross-modal retrieval in this space [21]. e premise of hash transformation is that the hash codes of similar samples are also similar.…”
Section: Cross-modal Retrieval Methods Based On Hashmentioning
confidence: 99%
“…Penelitian ini bertujuan untuk menangani konsep yang lebih jelas dan spesifik untuk hype dan pesan iklan penipuan tersebut. Untuk tujuan ini, bahasa iklan yang tidak jujur diklasifikasikan menjadi tiga yaitu, iklan fiktif, iklan menggertak (bluffing), dan iklan penipuan (Hou et al, 2018;Xie et al, 2019). Kategori yang berbeda dan terdefinisi dengan baik dan karakteristik masing-masing kategori serta kemungkinan implikasi dari pesan iklan terselubung telah dipelajari dalam pragmatik neo-Gricean.…”
Section: A Pendahuluanunclassified
“…Untuk itu, perusahaan menjauh dari citra iklan produk sederhana yang menginformasikan keunikan dan keunggulan produknya, dan membuat iklan berorientasi konsumen dari iklan citra perusahaan atau iklan berorientasi produsen yang mengembalikan keuntungan perusahaan kepada masyarakat. Ini adalah tren yang berkembang menjadi dua arah yang benar dengan sekaligus memperluas jangkauan area komunikasi dengan konsumen (Del Saz-Rubio, 2019;Xie et al, 2019). Sementara itu, linguistik periklanan sebagian besar berfokus pada pendekatan linguistik murni seperti linguistik teks dan semiotika, yaitu penelitian tentang bahasa iklan, dan aspek etika, yang merupakan pendekatan pragmatika/dialogistik untuk periklanan, relatif diabaikan.…”
Section: Tabel 7 Analisis Aspek Berlebihan Dan Kebohongan Pada Iklanunclassified
“…There has been significant research and progress on the crossmodal retrieval between texts and images in the last two decades, which derives from the keyword-based text-image cross-modal retrieval [31,45] and evolves into the sentence-based [9,26,35,44,49] and even long text (paragraph) based text-image cross-modal retrieval tasks [2,4,12,24,34,41,53]. As the text-image crossmodal retrieval tasks are widely applied in different scenarios and the text in the tasks grows longer and more complicated [34,47], the event-dense character is gradually emerging, i.e., the long text might contain the descriptions of multiple events. For example, as shown in Figure 1, the instructional descriptions in the recipe text contain several events about how to handle the ingredients.…”
Section: Introductionmentioning
confidence: 99%