2014
DOI: 10.1016/j.knosys.2014.08.007
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing the experience of users regarding the email classification task using labels

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
3
2
2

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 29 publications
0
2
0
1
Order By: Relevance
“…There has been substantial work on clustering emails. Applications include managing the email overloading problem by grouping emails into meaningful groups [21]- [23] such as subject-based folders [24] or personalised prioritisation [25].…”
Section: B Email Clusteringmentioning
confidence: 99%
“…There has been substantial work on clustering emails. Applications include managing the email overloading problem by grouping emails into meaningful groups [21]- [23] such as subject-based folders [24] or personalised prioritisation [25].…”
Section: B Email Clusteringmentioning
confidence: 99%
“…Çalışmanın temel araştırma alanları olarak, ( E-posta iletilerinin sınıflandırılması üzerine yapılan çalışmaların, gerek akademik gerekse de ticarileşme potansiyeli açısından önemli bir araştırma alanı olmayı sürdüreceği görülmektedir. Ancak burada ifade edilmeyen fakat literatürde sıkça karşılaşılan çalışmaların pek çoğu, anti-spam üzerine odaklansa da bu noktada kullanılan teknikler e-posta iletileri üzerinden başkaca sınıflama ve analiz gerektiren problemlere yeni ufuklar açmaktadır [16]. Ancak literatür kapsamında bakılan çalışmalarda bu tür analiz teknikleri sonucunda ortaya konulan ve iş uygulamaları için işbirlikçi bir uygulama çalışmasına rastlanmamıştır.…”
Section: İlgi̇li̇ çAlişmalar (Related Work)unclassified
“…One of the most used methods to generate the recommendations is the collaborative approach in which the recommendations to a user are based on other user recommendations with similar user profiles [27], taking into account the ratings provided by the users. Another widely used approach for its simplicity is the content-based approach, which generates the recommendations taking into account the items' features [28] and the user past experience [29] dealing with similar items. All approaches have their advantages and disadvantages, so that a widely used solution is the hybrid approach.…”
Section: -mentioning
confidence: 99%