Abstract:Current mobile devices allow the execution of sophisticated applications with the capacity for identifying the user situation, which can be helpful in treatments of mental disorders. In this paper, we present SituMan, a solution that provides situation awareness to MoodBuster, an ecological momentary assessment and intervention mobile application used to request self-assessments from patients in depression treatments. SituMan has a fuzzy inference engine to identify patient situations using context data gather… Show more
“…Two other studies developed their monitoring solution including a recommendation system to support patients with depression to cope with their diagnosis [59,60]. Mental health systems have also been used as a tool by caregivers to access the summary of situations experienced by patients with depression [61] or to alert physicians and families if an abnormal behavior is detected in patients with mood disorders [62].…”
Background
Technological advancements, together with the decrease in both price and size of a large variety of sensors, has expanded the role and capabilities of regular mobile phones, turning them into powerful yet ubiquitous monitoring systems. At present, smartphones have the potential to continuously collect information about the users, monitor their activities and behaviors in real time, and provide them with feedback and recommendations.
Objective
This systematic review aimed to identify recent scientific studies that explored the passive use of smartphones for generating health- and well-being–related outcomes. In addition, it explores users’ engagement and possible challenges in using such self-monitoring systems.
Methods
A systematic review was conducted, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, to identify recent publications that explore the use of smartphones as ubiquitous health monitoring systems. We ran reproducible search queries on PubMed, IEEE Xplore, ACM Digital Library, and Scopus online databases and aimed to find answers to the following questions: (1) What is the study focus of the selected papers? (2) What smartphone sensing technologies and data are used to gather health-related input? (3) How are the developed systems validated? and (4) What are the limitations and challenges when using such sensing systems?
Results
Our bibliographic research returned 7404 unique publications. Of these, 118 met the predefined inclusion criteria, which considered publication dates from 2014 onward, English language, and relevance for the topic of this review. The selected papers highlight that smartphones are already being used in multiple health-related scenarios. Of those, physical activity (29.6%; 35/118) and mental health (27.9; 33/118) are 2 of the most studied applications. Accelerometers (57.7%; 67/118) and global positioning systems (GPS; 40.6%; 48/118) are 2 of the most used sensors in smartphones for collecting data from which the health status or well-being of its users can be inferred.
Conclusions
One relevant outcome of this systematic review is that although smartphones present many advantages for the passive monitoring of users’ health and well-being, there is a lack of correlation between smartphone-generated outcomes and clinical knowledge. Moreover, user engagement and motivation are not always modeled as prerequisites, which directly affects user adherence and full validation of such systems.
“…Two other studies developed their monitoring solution including a recommendation system to support patients with depression to cope with their diagnosis [59,60]. Mental health systems have also been used as a tool by caregivers to access the summary of situations experienced by patients with depression [61] or to alert physicians and families if an abnormal behavior is detected in patients with mood disorders [62].…”
Background
Technological advancements, together with the decrease in both price and size of a large variety of sensors, has expanded the role and capabilities of regular mobile phones, turning them into powerful yet ubiquitous monitoring systems. At present, smartphones have the potential to continuously collect information about the users, monitor their activities and behaviors in real time, and provide them with feedback and recommendations.
Objective
This systematic review aimed to identify recent scientific studies that explored the passive use of smartphones for generating health- and well-being–related outcomes. In addition, it explores users’ engagement and possible challenges in using such self-monitoring systems.
Methods
A systematic review was conducted, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, to identify recent publications that explore the use of smartphones as ubiquitous health monitoring systems. We ran reproducible search queries on PubMed, IEEE Xplore, ACM Digital Library, and Scopus online databases and aimed to find answers to the following questions: (1) What is the study focus of the selected papers? (2) What smartphone sensing technologies and data are used to gather health-related input? (3) How are the developed systems validated? and (4) What are the limitations and challenges when using such sensing systems?
Results
Our bibliographic research returned 7404 unique publications. Of these, 118 met the predefined inclusion criteria, which considered publication dates from 2014 onward, English language, and relevance for the topic of this review. The selected papers highlight that smartphones are already being used in multiple health-related scenarios. Of those, physical activity (29.6%; 35/118) and mental health (27.9; 33/118) are 2 of the most studied applications. Accelerometers (57.7%; 67/118) and global positioning systems (GPS; 40.6%; 48/118) are 2 of the most used sensors in smartphones for collecting data from which the health status or well-being of its users can be inferred.
Conclusions
One relevant outcome of this systematic review is that although smartphones present many advantages for the passive monitoring of users’ health and well-being, there is a lack of correlation between smartphone-generated outcomes and clinical knowledge. Moreover, user engagement and motivation are not always modeled as prerequisites, which directly affects user adherence and full validation of such systems.
“…Therefore, we used fuzzy logic due to its ability to model expert knowledge through fuzzy sets and fuzzy rules and its notation that is easy to understand. Moreover, fuzzy logic has already been used to model situations of interest to mental health professionals [ 50 ].…”
Traditionally, mental health specialists monitor their patients’ social behavior by applying subjective self-report questionnaires in face-to-face meetings. Usually, the application of the self-report questionnaire is limited by cognitive biases (e.g., memory bias and social desirability). As an alternative, we present a solution to detect context-aware sociability patterns and behavioral changes based on social situations inferred from ubiquitous device data. This solution does not focus on the diagnosis of mental states, but works on identifying situations of interest to specialized professionals. The proposed solution consists of an algorithm based on frequent pattern mining and complex event processing to detect periods of the day in which the individual usually socializes. Social routine recognition is performed under different context conditions to differentiate abnormal social behaviors from the variation of usual social habits. The proposed solution also can detect abnormal behavior and routine changes. This solution uses fuzzy logic to model the knowledge of the mental health specialist necessary to identify the occurrence of behavioral change. Evaluation results show that the prediction performance of the identified context-aware sociability patterns has strong positive relation (Pearson’s correlation coefficient >70%) with individuals’ social routine. Finally, the evaluation conducted recognized that the proposed solution leading to the identification of abnormal social behaviors and social routine changes consistently.
“…In fact, 4 studies aimed to monitor health conditions related to a specific disease, such as detecting sleep abnormalities in patients with schizophrenia or hand tremors in those with Parkinson disease, and another 12 opted to use smartphones to sense users' daily lives to improve their general health and well-being. Among the studies that targeted a specific population, 6 [55,[60][61][62]75]. Senior population and workers were targeted by 3 studies each [1, 3,9,30,35,69].…”
Section: Focus and Target Population Of Included Studiesmentioning
Section: Limitations and Validation Concernsmentioning
confidence: 99%
“…GPS[36][37][38][39]42,44,46,47,[50][51][52][58][59][60][61]72,[105][106][107]; smartphone and app usage[36,39,41,42,52,53,59,60,72,106,[108][109][110]; accelerometer[35,36,[39][40][41][42]44,51,57,58,60,72,106]; cell-ID/calls[45,49,51,72,[105][106][107]; text messages…”
BACKGROUND
Technological advancements, together with the decrease in both price and size of a large variety of sensors, has expanded the role and capabilities of regular mobile phones, turning them into powerful yet ubiquitous monitoring systems. At present, smartphones have the potential to continuously collect information about the users, monitor their activities and behaviors in real time, and provide them with feedback and recommendations.
OBJECTIVE
This systematic review aimed to identify recent scientific studies that explored the passive use of smartphones for generating health- and well-being–related outcomes. In addition, it explores users’ engagement and possible challenges in using such self-monitoring systems.
METHODS
A systematic review was conducted, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, to identify recent publications that explore the use of smartphones as ubiquitous health monitoring systems. We ran reproducible search queries on PubMed, IEEE Xplore, ACM Digital Library, and Scopus online databases and aimed to find answers to the following questions: (1) What is the study focus of the selected papers? (2) What smartphone sensing technologies and data are used to gather health-related input? (3) How are the developed systems validated? and (4) What are the limitations and challenges when using such sensing systems?
RESULTS
Our bibliographic research returned 7404 unique publications. Of these, 118 met the predefined inclusion criteria, which considered publication dates from 2014 onward, English language, and relevance for the topic of this review. The selected papers highlight that smartphones are already being used in multiple health-related scenarios. Of those, physical activity (29.6%; 35/118) and mental health (27.9; 33/118) are 2 of the most studied applications. Accelerometers (57.7%; 67/118) and global positioning systems (GPS; 40.6%; 48/118) are 2 of the most used sensors in smartphones for collecting data from which the health status or well-being of its users can be inferred.
CONCLUSIONS
One relevant outcome of this systematic review is that although smartphones present many advantages for the passive monitoring of users’ health and well-being, there is a lack of correlation between smartphone-generated outcomes and clinical knowledge. Moreover, user engagement and motivation are not always modeled as prerequisites, which directly affects user adherence and full validation of such systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.