2022
DOI: 10.36227/techrxiv.20743966
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Ensemble Learning Based HRTF Personalization Using Anthropometric Features

Abstract: <p>In this paper, we propose an ensemble learning based model to synthesize the logarithmic magnitude response of head-related transfer function (HRTF) using anthropometric features. We first cluster subjects based on relevant anthropometric features to reduce differences within each group, then we use the ensemble learning algorithm on clustered results to predict the log-magnitude HRTF. In the training phase, three deep neural networks (DNNs), each of which aims to predict log-magnitude HRTFs in a part… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?