<p>In this paper, we propose an ensemble learning based model to synthesize the logarithmic magnitude response of head-related transfer function (HRTF) using anthropometric features. We first cluster subjects based on relevant anthropometric features to reduce differences within each group, then we use the ensemble learning algorithm on clustered results to predict the log-magnitude HRTF. In the training phase, three deep neural networks (DNNs), each of which aims to predict log-magnitude HRTFs in a particular group, are trained using anthropometric and angle-related features. Afterward, another DNN is trained to integrate estimates from the three group-wise DNNs into log-magnitude HTRFs. The proposed model is compared with a baseline DNN model and our previously proposed model, which incorporates an auto-encoder for dimensionality reduction. Experimental results show that the proposed model performs the best in synthesizing log-magnitude HRTFs in terms of the log-spectral distortion (LSD) measure with great stability.</p>
<p>In this paper, we propose an ensemble learning based model to synthesize the logarithmic magnitude response of head-related transfer function (HRTF) using anthropometric features. We first cluster subjects based on relevant anthropometric features to reduce differences within each group, then we use the ensemble learning algorithm on clustered results to predict the log-magnitude HRTF. In the training phase, three deep neural networks (DNNs), each of which aims to predict log-magnitude HRTFs in a particular group, are trained using anthropometric and angle-related features. Afterward, another DNN is trained to integrate estimates from the three group-wise DNNs into log-magnitude HTRFs. The proposed model is compared with a baseline DNN model and our previously proposed model, which incorporates an auto-encoder for dimensionality reduction. Experimental results show that the proposed model performs the best in synthesizing log-magnitude HRTFs in terms of the log-spectral distortion (LSD) measure with great stability.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.