During the formation of medical images, they are easily disturbed by factors such as acquisition devices and tissue backgrounds, causing problems such as blurred image backgrounds and difficulty in differentiation. In this paper, we combine the HarDNet module and the multi-coding attention mechanism module to optimize the two stages of encoding and decoding to improve the model segmentation performance. In the encoding stage, the HarDNet module extracts medical image feature information to improve the segmentation network operation speed. In the decoding stage, the multi-coding attention module is used to extract both the position feature information and channel feature information of the image to improve the model segmentation effect. Finally, to improve the segmentation accuracy of small targets, the use of Cross Entropy and Dice combination function is proposed as the loss function of this algorithm. The algorithm has experimented on three different types of medical datasets, Kvasir-SEG, ISIC2018, and COVID-19CT. The values of JS were 0.7189, 0.7702, 0.9895, ACC were 0.8964, 0.9491, 0.9965, SENS were 0.7634, 0.8204, 0.9976, PRE were 0.9214, 0.9504, 0.9931. The experimental results showed that the model proposed in this paper achieved excellent segmentation results in all the above evaluation indexes, which can effectively assist doctors to diagnose related diseases quickly and improve the speed of diagnosis and patients' quality of life.