2011 IEEE International Conference on Robotics and Biomimetics 2011
DOI: 10.1109/robio.2011.6181760
|View full text |Cite
|
Sign up to set email alerts
|

Ensemble of shape functions for 3D object classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
214
0
3

Year Published

2013
2013
2023
2023

Publication Types

Select...
5
4
1

Relationship

1
9

Authors

Journals

citations
Cited by 306 publications
(217 citation statements)
references
References 8 publications
0
214
0
3
Order By: Relevance
“…The laser scanning process generates a point cloud which is used in conjunction with 3D descriptors which summarize the object geometry to detect relevant objects. 3D descriptors can be divided into local descriptors (Gatzke et al 2005;Johnson and Hebert 1999), which describe the object geometry in the neighborhood of keypoints, and global descriptors (Wohlkinger and Vincze 2011;Rusu et al 2010), which compute features throughout an entire object. Object recognition from point clouds has been successfully applied to detect building elements (Bosche et al 2009) as well as construction equipment (Wang and Cho 2015).…”
Section: Existing Object Recognition Methodsmentioning
confidence: 99%
“…The laser scanning process generates a point cloud which is used in conjunction with 3D descriptors which summarize the object geometry to detect relevant objects. 3D descriptors can be divided into local descriptors (Gatzke et al 2005;Johnson and Hebert 1999), which describe the object geometry in the neighborhood of keypoints, and global descriptors (Wohlkinger and Vincze 2011;Rusu et al 2010), which compute features throughout an entire object. Object recognition from point clouds has been successfully applied to detect building elements (Bosche et al 2009) as well as construction equipment (Wang and Cho 2015).…”
Section: Existing Object Recognition Methodsmentioning
confidence: 99%
“…Die Form ist jedoch besonders geeignet, um Objektklassifizierungen zu ermöglichen. Da das Lernen einer Klasse aus vielen Beispielen sehr zeitaufwendig ist, stellt [30] eine Methode vor, die direkt aus 3D Modellen eine Beschreibung zur Wiedererkennung des Objekts lernt. Durch das automatische Kreieren von Ansichten mit einem spezifischen Sensormodell werden sehr gute Klassifiziererfolge erzielt.…”
Section: Abb 6 Objekterkennung Mit Starken Verdeckungen: Mit Hilfe unclassified
“…3.3 Object Classification 3.3.1 Features: For each segmented object we compute a vector of features composed of Geometric features mainly inspired by (Serna and Marcotegui, 2014) and of 3 histogram-based descriptors from the literature, namely CVFH (Aldoma et al, 2011), GRSD (Marton et al, 2010b) and ESF (Wohlkinger and Vincze, 2011). In summary we obtain a feature vector with 991 variables: 22 for geometric features, 308 for CVFH, 21 for GRSD and 640 for ESF.…”
Section: Object Segmentationmentioning
confidence: 99%