2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2014
DOI: 10.1109/smc.2014.6974260
|View full text |Cite
|
Sign up to set email alerts
|

Ensemble online sequential extreme learning machine for large data set classification

Abstract: Online sequential extreme learning machine (OS-ELM) proposed by Liang et al. employ sequential learning strategy to learn the target concept from the data. Compared with the original ELM, OS-ELM can learn data one-by-one or chunk-by-chunk with fixed or varying chunk size with almost same performance as ELM. While compared with other state-ofthe-art sequential algorithms such as SGBP, RAN and GAP-RBF, OS-ELM has faster learning speed and better generalization ability. However, similar to ELM, OS-ELM also has in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
6
0

Year Published

2015
2015
2022
2022

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(6 citation statements)
references
References 20 publications
0
6
0
Order By: Relevance
“…(Budiman et al, 2016;Iwashita et al, 2019;Jameel et al, 2020a, b, c;Budiman et al, 2017;Zang et al, 2014;Zliobaite et al, 2014;Kuncheva, 2004;Ghorbani et al, 2017;Gupta and Dhawan, 2019;Jensen et al, 2019;Nishida et al, 2008;Harel et al, 2014;Dyer and Polikar, 2012;Khamassi et al, 2019;Saurav et al, 2018;Dongre and Malik, 2014;Dariusz, 2010;Sayed et al, 2018;Wadewale and Desai, 2015;Brzezinski and Stefanowski, 2014a;Hoens et al, 2012;Jagadeesh Chandra Bose et al, 2011;Huang et al, 2013;Minku et al, 2010;Tsymbal, 2004;Gomes et al, 2011;Hoens et al, 2011;Webb et al, 2016Webb et al, , 2018 To investigate the existing CD handling approaches and determine their effectiveness and shortcomings for current and future trends. (Jameel et al, 2020(Jameel et al, , 2020Uddin et al, 2019, September;Liu and Wang, 2010;van Schaik and Tapson, 2015;Budiman et al, 2016;Huang et al, 2012;Zhai et al, 2014;Xu and Wang, 2016;2017;Khamassi et al, 2019;…”
Section: Study Identification and Selectionmentioning
confidence: 99%
See 3 more Smart Citations
“…(Budiman et al, 2016;Iwashita et al, 2019;Jameel et al, 2020a, b, c;Budiman et al, 2017;Zang et al, 2014;Zliobaite et al, 2014;Kuncheva, 2004;Ghorbani et al, 2017;Gupta and Dhawan, 2019;Jensen et al, 2019;Nishida et al, 2008;Harel et al, 2014;Dyer and Polikar, 2012;Khamassi et al, 2019;Saurav et al, 2018;Dongre and Malik, 2014;Dariusz, 2010;Sayed et al, 2018;Wadewale and Desai, 2015;Brzezinski and Stefanowski, 2014a;Hoens et al, 2012;Jagadeesh Chandra Bose et al, 2011;Huang et al, 2013;Minku et al, 2010;Tsymbal, 2004;Gomes et al, 2011;Hoens et al, 2011;Webb et al, 2016Webb et al, , 2018 To investigate the existing CD handling approaches and determine their effectiveness and shortcomings for current and future trends. (Jameel et al, 2020(Jameel et al, , 2020Uddin et al, 2019, September;Liu and Wang, 2010;van Schaik and Tapson, 2015;Budiman et al, 2016;Huang et al, 2012;Zhai et al, 2014;Xu and Wang, 2016;2017;Khamassi et al, 2019;…”
Section: Study Identification and Selectionmentioning
confidence: 99%
“…Few recent studies concentrated on adaptive learning techniques using ELM based Single classifiers (van Schaik and Tapson, 2015;Huang et al, 2012; and Ensemble classifier for CD adaptation (Zhai et al, 2014;Xu and Wang, 2016;2017). However, all these solutions lie in the semi-adaptive category (does not implement fully autonomous learning behavior).…”
Section: Single Classifier-based CD Adaptation Approachesmentioning
confidence: 99%
See 2 more Smart Citations
“…In the traditional extreme learning machine algorithm, when new data are obtained, the historical data will be repeatedly trained together with new data, which requires a lot of time. OS-ELM effectively avoids the repeated training of data and greatly improves the learning efficiency by using a partitioned matrix method [34][35][36].…”
Section: Os-elm Algorithmmentioning
confidence: 99%