The prevalence of skin diseases has increased dramatically in recent decades, and they are now considered major chronic diseases globally. People suffer from a broad spectrum of skin diseases, whereas skin tumors are potentially aggressive and life-threatening. However, the severity of skin tumors can be managed (by treatment) if diagnosed early. Health practitioners usually apply manual or computer vision-based tools for skin tumor diagnosis, which may cause misinterpretation of the disease and lead to a longer analysis time. However, cutting-edge technologies such as deep learning using the federated machine learning approach have enabled health practitioners (dermatologists) in diagnosing the type and severity level of skin diseases. Therefore, this study proposes an adaptive federated machine learning-based skin disease model (using an adaptive ensemble convolutional neural network as the core classifier) in a step toward an intelligent dermoscopy device for dermatologists. The proposed federated machine learning-based architecture consists of intelligent local edges (dermoscopy) and a global point (server). The proposed architecture can diagnose the type of disease and continuously improve its accuracy. Experiments were carried out in a simulated environment using the International Skin Imaging Collaboration (ISIC) 2019 dataset (dermoscopy images) to test and validate the model’s classification accuracy and adaptability. In the future, this study may lead to the development of a federated machine learning-based (hardware) dermoscopy device to assist dermatologists in skin tumor diagnosis.
Multispectral image classification has long been the domain of static learning with nonstationary input data assumption. The prevalence of Industrial Revolution 4.0 has led to the emergence to perform real-time analysis (classification) in an online learning scenario. Due to the complexities (spatial, spectral, dynamic data sources, and temporal inconsistencies) in online and time-series multispectral image analysis, there is a high occurrence probability in variations of spectral bands from an input stream, which deteriorates the classification performance (in terms of accuracy) or makes them ineffective. To highlight this critical issue, firstly, this study formulates the problem of new spectral band arrival as virtual concept drift. Secondly, an adaptive convolutional neural network (CNN) ensemble framework is proposed and evaluated for a new spectral band adaptation. The adaptive CNN ensemble framework consists of five (05) modules, including dynamic ensemble classifier (DEC) module. DEC uses the weighted voting ensemble approach using multiple optimized CNN instances. DEC module can increase dynamically after new spectral band arrival. The proposed ensemble approach in the DEC module (individual spectral band handling by the individual classifier of the ensemble) contributes the diversity to the ensemble system in the simple yet effective manner. The results have shown the effectiveness and proven the diversity of the proposed framework to adapt the new spectral band during online image classification. Moreover, the extensive training dataset, proper regularization, optimized hyperparameters (model and training), and more appropriate CNN architecture significantly contributed to retaining the performance accuracy.
In the modern era of digitization, the analysis in the Internet of Things (IoT) environment demands a brisk amalgamation of domains such as high-dimension (images) data sensing technologies, robust internet connection (4 G or 5 G) and dynamic (adaptive) deep learning approaches. This is required for a broad range of indispensable intelligent applications, like intelligent healthcare systems. Dynamic image classification is one of the major areas of concern for researchers, which may take place during analysis under the IoT environment. Dynamic image classification is associated with several temporal data perturbations (such as novel class arrival and class evolution issue) which cause a massive classification deterioration in the deployed classification models and make them in-effective. Therefore, this study addresses such temporal inconsistencies (novel class arrival and class evolution issue) and proposes an adapted deep learning framework (ameliorated adaptive convolutional neural network (CNN) ensemble framework), which handles novel class arrival and class evaluation issue during dynamic image classification. The proposed framework is an improved version of previous adaptive CNN ensemble with an additional online training (OT) and online classifier update (OCU) modules. An OT module is a clustering-based approach which uses the Euclidean distance and silhouette method to determine the potential new classes, whereas, the OCU updates the weights of the existing instances of the ensemble with newly arrived samples. The proposed framework showed the desirable classification improvement under non-stationary scenarios for the benchmark (CIFAR10) and real (ISIC 2019: Skin disease) data streams. Also, the proposed framework outperformed against state-of-art shallow learning and deep learning models. The results have shown the effectiveness and proven the diversity of the proposed framework to adapt the new concept changes during dynamic image classification. In future work, the authors of this study aim to develop an IoT-enabled adaptive intelligent dermoscopy device (for dermatologists). Therefore, further improvements in classification accuracy (for real dataset) is the future concern of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.