An adaptive neural network based short-term electric load forecasting system is presented. The system is developed and implemented for Florida Power and Light Company(FPL). Practical experiences with the system are discussed. The system accounts for seasonal and daily characteristics, as well as abnormal conditions such as cold fronts, heat waves, holidays and other conditions. It is capable of forecasting load with a lead time of one hour to seven days. The adaptive mechanism is used to train the neural networks when on-line. The results indicate that the load forecasting system presented gives robust and more accurate forecasts and allows greater adaptability to sudden climatic changes compared with statistical methods. The system is portable and can be modified to suit the requirements of other utility companies.
Smart Grid (S.G.) is a digitally enabled power grid with an automatic capability to control electricity and information between utility and consumer. S.G. data streams are heterogenous and possess a dynamic environment, whereas the existing machine learning methods are static and stand obsolete in such environments. Since these models cannot handle variations posed by S.G. and utilities with different generation modalities (D.G.M.), a model with adaptive features must comply with the requirements and fulfill the demand for new data, features, and modality. In this study, we considered two open sources and one real-world dataset and observed the behavior of ARIMA, ANN, and LSTM concerning changes in input parameters. It was found that no model observed the change in input parameters until it was manually introduced. It was observed that considered models experienced performance degradation and deterioration from 5 to 15% in terms of accuracy relating to parameter change. Therefore, to improve the model accuracy and adapt the parametric variations, which are dynamic in nature and evident in S.G. and D.G.M. environments. The study has proposed a novel adaptive framework to overcome the existing limitations in electrical load forecasting models.
The paper being presented describes how an Artificial Neural Network can be utilized for improving the shape of an electrical power load forecast.It is shown that the application of this method to make the shape of the forecast load curve conform to the shape of the typical seasonal load curve results in improvement in the overall accuracy of the electrical power load forecast.
This paper proposed a hybrid intelligent approach based on empirical mode decomposition (EMD), artificial neural network (ANN) and J48 algorithm of machine learning for real-time harmonics analysis of digital substation’s equipment based on IEC-61850 using explanatory input variables based on laboratory proto-type real-time recorded database. In the proposed hybrid model, these variables are first extracted then diagnostic of power transformer harmonics of digital substation is evaluated/analyzed to perform the long term as well as the short term goal and planning in the electrical power network. In this paper, firstly, experimental analysis is performed to validate the laboratory prototype setup using FFT (fast Fourier transform), STFT (short-time Fourier transform) and CWT (continuous wavelet transform). Then, features are extracted from experimental dataset using EMD (empirical mode decomposition) method. The IMFs (intrinsic mode functions) have generated from EMD, which are used as an input variable to the two different diagnostic models, i.e., ANN and J48 algorithm. In order to validate the performance and accuracy of the proposed hybrid model, a comparative analysis is performed by using ANN and J48 method (with and without EMD method) and the results are compared. Obtained results shows that the proposed hybrid diagnostics approach for harmonics analysis has outperformance characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.