Septins assemble into filaments and higher-order structures that act as scaffolds for diverse cell functions including cytokinesis, cell polarity, and membrane remodeling. Despite their conserved role in cell organization, little is known about how septin filaments elongate and are knitted together into higher-order assemblies. Using fluorescence correlation spectroscopy, we determined that cytosolic septins are in small complexes, suggesting that septin filaments are not formed in the cytosol. When the plasma membrane of live cells is monitored by total internal reflection fluorescence microscopy, we see that septin complexes of variable size diffuse in two dimensions. Diffusing septin complexes collide and make end-on associations to form elongated filaments and higher-order structures, an assembly process we call annealing. Septin assembly by annealing can be reconstituted in vitro on supported lipid bilayers with purified septin complexes. Using the reconstitution assay, we show that septin filaments are highly flexible, grow only from free filament ends, and do not exchange subunits in the middle of filaments. This work shows that annealing is a previously unidentified intrinsic property of septins in the presence of membranes and demonstrates that cells exploit this mechanism to build large septin assemblies.cytoskeleton | biophysics S eptin filaments form rings, bars, and gauzes that serve as a scaffold at cell division sites; act to retract blebbed regions of membrane; and restrict diffusion between cell compartments (1-4). Septin function is required for cell division and viability in many eukaryotes whereas misregulation is associated with cancers and neurodegenerative disorders (5-8). Furthermore, septins mediate entry of both bacterial and fungal pathogens into host cells (9-11). In vivo, septin assembly is restricted both in time and in space through local activation of small GTPases such as Cdc42. Localized signaling leads to higher-order septin structures forming closely apposed to the plasma membrane at the plane of division, sites of polarity, and curved membranes (10,(12)(13)(14). Notably, eukaryotic cells of different geometries build higher-order septin assemblies of various shapes, sizes, and functions (4, 15, 16). Although septins are critical for spatial organization of cell plasma membranes, their assembly and disassembly dynamics are not understood (15).Electron microscopy (EM) studies of recombinant and immunoprecipitated Saccharomyces cerevisiae septins have shown that septins form nonpolar hetero-octameric rod-shaped complexes in high-salt buffers (>300 mM) and elongated filaments when dialyzed into low-salt buffers (<100 mM) (17, 18). Structural analyses of worm and mammalian septins have revealed that the heteromeric, rod-shaped complex is conserved (19-21). Thus, septin rods characterized to date contain two copies of each septin subunit assembled into a nonpolar, heteromeric complex (Fig. S1). Association of purified septin proteins with phosphoinositide-containing membrane monola...