This paper presents an overview of the origin of multiscale approaches in mechanics. While the pioneer molecular models of linear elastic bodies by Navier, Cauchy and Poisson were contradicted by experiments, the phenomenological energetic approach by Green still seems suitable for simple materials only. Voigt's molecular model, here reinterpreted in the light of contemporary mechanics, reconciled the two approaches providing a conceptual guideline for developing constitutive models based on a direct link between continuum and discrete solid mechanics. Such a theoretical background proves to be especially suitable for new complex materials. An example referred to masonry-like materials is given.