In the framework of Husimi and Bethe lattices, we investigate a generalized polymer model that incorporates as special cases different models previously studied in the literature, namely, the standard interacting self-avoiding walk, the interacting self-avoiding trail, and the vertex-interacting self-avoiding walk. These models are characterized by different microscopic interactions, giving rise, in the two-dimensional case, to collapse transitions of an apparently different nature. We expect that our results, even though of a mean-field type, could provide some useful information to elucidate the role of such different θ points in the polymer phase diagram. These issues are at the core of a long-standing unresolved debate.