Abstract. The turbulent transport of toroidal angular momentum in the core of a tokamak plasma is investigated in global, full-f gyrokinetic simulations, performed with the GYSELA code in the flux-driven regime. During the initial turbulent phase, a front of positive Reynolds stress propagates radially, generating intrinsic toroidal rotation from a vanishing initial profile. This is also accompanied by a propagating front of turbulent heat flux. In the statistical steady-state regime, turbulent transport exhibits large-scale avalanche-like events which are found to transport both heat and momentum, and similar statistical properties are obtained for both fluxes. The impact of scrape-off layer flows is also investigated by modifying the boundary conditions in the simulations. The observed impact is radially localized for L-mode like poloidal profiles of parallel velocity at the edge, while a constant velocity at the edge can modify the core toroidal rotation profile in a large fraction of the radial domain.